Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Int J Mol Sci ; 22(5)2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33670954

RESUMO

Fusarium verticillioides causes multiple diseases of Zea mays (maize) including ear and seedling rots, contaminates seeds and seed products worldwide with toxic chemicals called fumonisins. The role of fumonisins in disease is unclear because, although they are not required for ear rot, they are required for seedling diseases. Disease symptoms may be due to the ability of fumonisins to inhibit ceramide synthase activity, the expected cause of lipids (fatty acids, oxylipins, and sphingolipids) alteration in infected plants. In this study, we explored the impact of fumonisins on fatty acid, oxylipin, and sphingolipid levels in planta and how these changes affect F. verticillioides growth in maize. The identity and levels of principal fatty acids, oxylipins, and over 50 sphingolipids were evaluated by chromatography followed by mass spectrometry in maize infected with an F. verticillioides fumonisin-producing wild-type strain and a fumonisin-deficient mutant, after different periods of growth. Plant hormones associated with defense responses, i.e., salicylic and jasmonic acid, were also evaluated. We suggest that fumonisins produced by F. verticillioides alter maize lipid metabolism, which help switch fungal growth from a relatively harmless endophyte to a destructive necrotroph.


Assuntos
Fumonisinas/toxicidade , Fusarium/química , Germinação , Metabolismo dos Lipídeos/efeitos dos fármacos , Micoses/metabolismo , Doenças das Plantas/microbiologia , Zea mays/efeitos dos fármacos , Ciclopentanos/análise , Ciclopentanos/metabolismo , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Fumonisinas/farmacologia , Micotoxinas/toxicidade , Oxilipinas/análise , Oxilipinas/metabolismo , Ácido Salicílico/análise , Ácido Salicílico/metabolismo , Esfingolipídeos/análise , Esfingolipídeos/metabolismo , Zea mays/química , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
2.
J Lipid Res ; 57(6): 1051-8, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27127078

RESUMO

Acne is a multifactorial skin disorder frequently observed during adolescence with different grades of severity. Multiple factors centering on sebum secretion are implicated in acne pathogenesis. Despite the recognized role of sebum, its compositional complexity and limited analytical approaches have hampered investigation of alterations specifically associated with acne. To examine the profiles of lipid distribution in acne sebum, 61 adolescents (29 males and 32 females) were enrolled in this study. Seventeen subjects presented no apparent clinical signs of acne. The 44 affected individuals were clinically classified as mild (13 individuals), moderate (19 individuals), and severe (12 individuals) acne. Sebum was sampled from the forehead with Sebutape(TM) adhesive patches. Profiles of neutral lipids were acquired with rapid-resolution reversed-phase/HPLC-TOF/MS in positive ion mode. Univariate and multivariate statistical analyses led to the identification of lipid species with significantly different levels between healthy and acne sebum. The majority of differentiating lipid species were diacylglycerols (DGs), followed by fatty acyls, sterols, and prenols. Overall, the data indicated an association between the clinical grading of acne and sebaceous lipid fingerprints and highlighted DGs as more abundant in sebum from adolescents affected with acne.


Assuntos
Acne Vulgar/metabolismo , Diglicerídeos/isolamento & purificação , Lipídeos/isolamento & purificação , Pele/metabolismo , Esteróis/isolamento & purificação , Acne Vulgar/patologia , Adolescente , Adulto , Cromatografia Líquida de Alta Pressão , Diglicerídeos/metabolismo , Feminino , Hemiterpenos , Humanos , Lipídeos/química , Lipídeos/classificação , Masculino , Pentanóis/química , Pentanóis/isolamento & purificação , Sebo/metabolismo , Índice de Gravidade de Doença , Pele/química , Pele/patologia , Esteróis/metabolismo
3.
Planta ; 243(5): 1279-96, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26919986

RESUMO

MAIN CONCLUSION: Cold-acclimation genes in woody dicots without winter-dormancy, e.g., olive-tree, need investigation. Positive relationships between OeFAD8, OeOSM , and OeLIP19 and olive-tree cold-acclimation exist, and couple with increased lipid unsaturation and cutinisation. Olive-tree is a woody species with no winter-dormancy and low frost-tolerance. However, cold-tolerant genotypes were empirically selected, highlighting that cold-acclimation might be acquired. Proteins needed for olive-tree cold-acclimation are unknown, even if roles for osmotin (OeOSM) as leaf cryoprotectant, and seed lipid-transfer protein for endosperm cutinisation under cold, were demonstrated. In other species, FAD8, coding a desaturase producing α-linolenic acid, is activated by temperature-lowering, concomitantly with bZIP-LIP19 genes. The research was focussed on finding OeLIP19 gene(s) in olive-tree genome, and analyze it/their expression, and that of OeFAD8 and OeOSM, in drupes and leaves under different cold-conditions/developmental stages/genotypes, in comparison with changes in unsaturated lipids and cell wall cutinisation. Cold-induced cytosolic calcium transients always occurred in leaves/drupes of some genotypes, e.g., Moraiolo, but ceased in others, e.g., Canino, at specific drupe stages/cold-treatments, suggesting cold-acclimation acquisition only in the latter genotypes. Canino and Moraiolo were selected for further analyses. Cold-acclimation in Canino was confirmed by an electrolyte leakage from leaf/drupe membranes highly reduced in comparison with Moraiolo. Strong increases in fruit-epicarp/leaf-epidermis cutinisation characterized cold-acclimated Canino, and positively coupled with OeOSM expression, and immunolocalization of the coded protein. OeFAD8 expression increased with cold-acclimation, as the production of α-linolenic acid, and related compounds. An OeLIP19 gene was isolated. Its levels changed with a trend similar to OeFAD8. All together, results sustain a positive relationship between OeFAD8, OeOSM and OeLIP19 expression in olive-tree cold-acclimation. The parallel changes in unsaturated lipids and cutinisation concur to suggest orchestrated roles of the coded proteins in the process.


Assuntos
Aclimatação/genética , Olea/genética , Dormência de Plantas/genética , Proteínas de Plantas/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Cálcio/metabolismo , Membrana Celular/metabolismo , Parede Celular/metabolismo , Temperatura Baixa , Citosol/metabolismo , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Metabolismo dos Lipídeos/genética , Olea/citologia , Olea/fisiologia , Células Vegetais/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Estações do Ano
4.
Exp Dermatol ; 23(10): 759-61, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25039349

RESUMO

Lipid droplets (LD) are dynamic organelles that manage cellular lipid synthesis, storage and retrieval. Although LD-associated proteins, including the perilipin family (PLIN1-PLIN5), are essential for these functions, they have been poorly characterized in sebocytes. Here, we employed siRNAs to downregulate PLIN3 in SZ95 sebaceous gland cells and evaluated the consequences in lipid accumulation by nile red staining and mass spectrometry. Nile red staining revealed that siRNA-mediated downregulation of PLIN3 significantly impaired linoleic acid-induced lipid accumulation in SZ95 sebocytes. Mass spectrometry revealed that PLIN3 was implicated in the metabolism of linoleic acid, a lipid source used in the build-up of triglycerides, among other acyl lipids. Furthermore, the expression of key enzymes of sebaceous lipogenesis was altered in PLIN3-deficient sebocytes, consistent with the changes observed in the neutral lipid abundance, suggesting that PLIN3 functions are intertwined with the lipogenic pathways implicated in sebaceous lipogenesis, such as desaturation and triglyceride synthesis.


Assuntos
Lipogênese , Glândulas Sebáceas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Linhagem Celular , Regulação para Baixo , Humanos , Ácido Linoleico/metabolismo , Lipogênese/genética , Redes e Vias Metabólicas , Perilipina-3 , RNA Interferente Pequeno/genética , Glândulas Sebáceas/citologia , Triglicerídeos/metabolismo , Proteínas de Transporte Vesicular/antagonistas & inibidores , Proteínas de Transporte Vesicular/genética
5.
Exp Dermatol ; 22(1): 41-7, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23278893

RESUMO

Azelaic acid (AzA) has been used for the treatment for inflammatory skin diseases, such as acne and rosacea. Interestingly, an improvement in skin texture has been observed after long-time treatment with AzA. We previously unrevealed that anti-inflammatory activity of AzA involves a specific activation of PPARγ, a nuclear receptor that plays a relevant role in inflammation and even in ageing processes. As rosacea has been considered as a photo-aggravated disease, we investigated the ability of AzA to counteract stress-induced premature cell senescence (SIPS). We employed a SIPS model based on single exposure of human dermal fibroblasts (HDFs) to UVA and 8-methoxypsoralen (PUVA), previously reported to activate a senescence-like phenotype, including long-term growth arrest, flattened morphology and increased synthesis of matrix metalloproteinases (MMPs) and senescence-associated ß-galactosidase (SA-ß-gal). We found that PUVA-treated HDFs grown in the presence of AzA maintained their morphology and reduced MMP-1 release and SA-ß-galactosidase-positive cells. Moreover, AzA induced a reduction in ROS generation, an up-modulation of antioxidant enzymes and a decrease in cell membrane lipid damages in PUVA-treated HDFs. Further evidences of AzA anti-senescence effect were repression of p53 and p21, increase in type I pro-collagen and abrogation of the enhanced expression of growth factors, such as HGF and SCF. Interestingly, PUVA-SIPS showed a decreased activation of PPARγ and AzA counteracted this effect, suggesting that AzA effect involves PPARγ modulation. All together these data showed that AzA interferes with PUVA-induced senescence-like phenotype and its ability to activate PPAR-γ provides relevant insights into the anti-senescence mechanism.


Assuntos
Senescência Celular/efeitos dos fármacos , Fármacos Dermatológicos/farmacologia , Ácidos Dicarboxílicos/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , PPAR gama/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , Senescência Celular/efeitos da radiação , Colágeno Tipo I/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Fibroblastos/citologia , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Metaloproteinase 1 da Matriz/metabolismo , Metoxaleno/farmacologia , Terapia PUVA , Fenótipo , Fosfolipídeos/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Pró-Colágeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Células-Tronco/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Raios Ultravioleta , beta-Galactosidase/metabolismo
6.
Sci Rep ; 11(1): 16591, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34400712

RESUMO

Lipidomics is advantageous in the study of sebum perturbations occurring in acne. An extended evaluation of the sebum lipid profiles in acne-prone sebaceous areas is lacking in dark skin. Yet, there is a void space in understanding how the building blocks of sebum lipids, i.e. individual fatty acids (FAs), are intertwined with acne-prone skin. We aimed to determine the sebum lipidome in facial areas of adolescents with and without acne in Nigeria. A cross-sectional analytical study was conducted in 60 adolescents/young adults divided in 30 acne patients (15F, 15M) and 30 age and sex-matched controls. Sebum samples obtained from foreheads and cheeks were analysed separately by gas chromatography-mass spectrometry (GCMS) and thin layer chromatography (HPTLC). Distributions of sebum components were investigated with multivariate ANOVA-simultaneous component analysis (ASCA). Sebum incretion in acne was paralleled by significantly higher abundance of triglycerides, wax esters, and squalene together with monounsaturated FAs (MUFAs), and straight chain saturated FAs (SFAs), especially those with odd-carbon chain, i.e. C13:0, C15:0, and C17:0. Profiling weight/weight percentage of individual components revealed that, in acne, the free FAs (FFAs) array was shifted towards higher relative abundance of the SFAs C15:0, C16:0, and C17:0 and lower percentage of the anteiso-branched FFAs with 12, 14, 16, and 18 carbons. In acne patients, MUFAs and PUFAs were quantitatively increased and decreased on foreheads and cheeks, respectively. Relative abundance of fatty alcohols was decreased in acne independent on the site. The results indicated that acne associates with site-specific derangement of the pathways regulating the balance among odd straight-chain and branched-chain SFAs, MUFAs, which included sapienate (C16:1n-10), PUFAs, and squalene.


Assuntos
Acne Vulgar/metabolismo , Face , Lipidômica , Lipídeos/análise , Sebo/química , Adolescente , População Negra , Bochecha , Estudos Transversais , Ácidos Graxos/análise , Álcoois Graxos/análise , Feminino , Testa , Humanos , Masculino , Nigéria , Índice de Gravidade de Doença , Pigmentação da Pele , Adulto Jovem
7.
J Lipid Res ; 51(11): 3377-88, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20719760

RESUMO

Sebum is a complex lipid mixture that is synthesized in sebaceous glands and excreted on the skin surface. The purpose of this study was the comprehensive detection of the intact lipids that compose sebum. These lipids exist as a broad range of chemical structures and concentrations. Sebum was collected with SebuTape(TM) from the foreheads of healthy donors, and then separated by HPLC on a C8 stationary phase with sub 2 µm particle size. This HPLC method provided high resolution and excellent reproducibility of retention times (RT). Compound mining was performed with time of flight (TOF) and triple quadrupole (QqQ) mass spectrometers (MS), which allowed for the classification of lipids according to their elemental composition, degree of unsaturation, and MS/MS fragmentation. The combination of the two MS systems detected 95 and 29 families of triacylglycerols (TAG) and diacylglycerols (DAG), respectively. Assignment was carried out regardless of positional isomerism. Among the wax esters (WE), 28 species were found to contain the 16:1 fatty acyl moiety. This method was suitable for the simultaneous detection of squalene and its oxygenated derivative. A total of 9 cholesterol esters (CE) were identified and more than 48 free fatty acids (FFA) were detected in normal sebum. The relative abundance of each individual lipid within its own chemical class was determined for 12 healthy donors. In summary, this method provided the first characterization of the features and distribution of intact components of the sebum lipidome.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Lipídeos/análise , Sebo/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Ésteres do Colesterol/análise , Ésteres do Colesterol/metabolismo , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Feminino , Glicerídeos/análise , Glicerídeos/metabolismo , Glicolipídeos/análise , Glicolipídeos/metabolismo , Humanos , Masculino , Sebo/metabolismo , Esqualeno/análise , Esqualeno/metabolismo , Fatores de Tempo , Adulto Jovem
8.
Sci Rep ; 8(1): 11500, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30065281

RESUMO

The skin surface lipids (SSL) result from the blending of sebaceous and epidermal lipids, which derive from the sebaceous gland (SG) secretion and the permeability barrier of the stratum corneum (SC), respectively. In humans, the composition of the SSL is distinctive of the anatomical distribution of the SG. Thus, the abundance of sebum biomarkers is consistent with the density of the SG. Limited evidence on the influence that the SG exerts on the SC lipidome is available. We explored the differential amounts of sebaceous and epidermal lipids in areas at different SG density with lipidomics approaches. SC was sampled with adhesive patches from forearm, chest, and forehead of 10 healthy adults (8F, 2M) after mechanical removal of sebum with absorbing paper. Lipid extracts of SC were analysed by HPLC/(-)ESI-TOF-MS. In the untargeted approach, the naïve molecular features extraction algorithm was used to extract meaningful entities. Aligned and normalized data were evaluated by univariate and multivariate statistics. Quantitative analysis of free fatty acids (FFA) and cholesterol sulfate (CHS) was performed by targeted HPLC/(-)ESI-TOF-MS, whereas cholesterol and squalene were quantified by GC-MS. Untargeted approaches demonstrated that the relative abundance of numerous lipid species was distinctive of SC depending upon the different SG density. The discriminating species included FFA, CHS, and ceramides. Targeted analyses confirmed that sebaceous FFA and epidermal FFA were increased and decreased, respectively, in areas at high SG density. CHS and squalene, which are biomarkers of epidermal and sebaceous lipid matrices, respectively, were both significantly higher in areas at elevated SG density. Overall, results indicated that the SG secretion intervenes in shaping the lipid composition of the epidermal permeability barrier.


Assuntos
Lipídeos/fisiologia , Glândulas Sebáceas/metabolismo , Glândulas Sebáceas/fisiologia , Sebo/metabolismo , Sebo/fisiologia , Pele/metabolismo , Pele/fisiopatologia , Adulto , Ceramidas/metabolismo , Colesterol/metabolismo , Ésteres do Colesterol/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Feminino , Humanos , Masculino , Permeabilidade , Esqualeno/metabolismo
10.
Toxins (Basel) ; 7(10): 4315-29, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26512693

RESUMO

Aspergillus flavus is an efficient producer of mycotoxins, particularly aflatoxin B1, probably the most hepatocarcinogenic naturally-occurring compound. Although the inducing agents of toxin synthesis are not unanimously identified, there is evidence that oxidative stress is one of the main actors in play. In our study, we use menadione, a quinone extensively implemented in studies on ROS response in animal cells, for causing stress to A. flavus. For uncovering the molecular determinants that drive A. flavus in challenging oxidative stress conditions, we have evaluated a wide spectrum of several different parameters, ranging from metabolic (ROS and oxylipin profile) to transcriptional analysis (RNA-seq). There emerges a scenario in which A. flavus activates several metabolic processes under oxidative stress conditions for limiting the ROS-associated detrimental effects, as well as for triggering adaptive and escape strategies.


Assuntos
Aflatoxinas/biossíntese , Aspergillus flavus/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Oxilipinas/metabolismo , Vitamina K 3/farmacologia , Aspergillus flavus/genética , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/metabolismo , Perfilação da Expressão Gênica , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo , Transcriptoma/efeitos dos fármacos
11.
Toxins (Basel) ; 7(9): 3657-70, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26378580

RESUMO

Lipid molecules are increasingly recognized as signals exchanged by organisms interacting in pathogenic and/or symbiotic ways. Some classes of lipids actively determine the fate of the interactions. Host cuticle/cell wall/membrane components such as sphingolipids and oxylipins may contribute to determining the fate of host-pathogen interactions. In the present field study, we considered the relationship between specific sphingolipids and oxylipins of different hybrids of Zea mays and fumonisin by F. verticillioides, sampling ears at different growth stages from early dough to fully ripe. The amount of total and free fumonisin differed significantly between hybrids and increased significantly with maize ripening. Oxylipins and phytoceramides changed significantly within the hybrids and decreased with kernel maturation, starting from physiological maturity. Although the correlation between fumonisin accumulation and plant lipid profile is certain, the data collected so far cannot define a cause-effect relationship but open up new perspectives. Therefore, the question-"Does fumonisin alter plant lipidome or does plant lipidome modulate fumonisin accumulation?"-is still open.


Assuntos
Contaminação de Alimentos/análise , Fumonisinas/análise , Zea mays/química , Zea mays/microbiologia , Microbiologia de Alimentos , Fusarium/crescimento & desenvolvimento , Fusarium/isolamento & purificação , Interações Hospedeiro-Patógeno , Oxilipinas/metabolismo , Esfingolipídeos/metabolismo
12.
FEBS Lett ; 589(12): 1376-82, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25889637

RESUMO

The roles of the epidermal growth factor receptor (EGFR) in sebaceous glands remain poorly explored. We show that human sebocytes express EGFR and lower levels of ERBB2 and ERBB3, all receptors being downregulated after the induction of lipid synthesis. Nile red staining showed that siRNA-mediated downregulation of EGFR or ERBB3 increases lipid accumulation, whereas ERBB2 downregulation has no effect. Spectrometry confirmed induction of triglycerides after EGFR or ERBB3 downregulation and revealed induction of cholesteryl esters after downregulation of EGFR, ERBB2 or ERBB3. Thus, EGFR/ERBB receptors differentially modulate sebaceous lipogenesis, a key feature of sebaceous gland physiology and of several skin diseases.


Assuntos
Receptores ErbB/metabolismo , Regulação Enzimológica da Expressão Gênica , Lipogênese , Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo , Glândulas Sebáceas/metabolismo , Biomarcadores/metabolismo , Linhagem Celular , Ésteres do Colesterol/metabolismo , Regulação para Baixo , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Ácidos Graxos não Esterificados/metabolismo , Humanos , Ligantes , Ácido Linoleico/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/genética , Receptor ErbB-3/antagonistas & inibidores , Receptor ErbB-3/genética , Glândulas Sebáceas/enzimologia , Triglicerídeos/metabolismo , Regulação para Cima
13.
Artigo em Inglês | MEDLINE | ID: mdl-25255035

RESUMO

Fusarium verticillioides is one of the most important fungal pathogens causing ear and stalk rot in maize, even if frequently asymptomatic, producing a harmful series of compounds named fumonisins. Plant and fungal oxylipins play a crucial role in determining the outcome of the interaction between the pathogen and its host. Moreover, oxylipins result as signals able to modulate the secondary metabolism in fungi. In keeping with this, a novel, quantitative LC-MS/MS method was designed to quantify up to 17 different oxylipins produced by F. verticillioides and maize kernels. By applying this method, we were able to quantify oxylipin production in vitro - F. verticillioides grown into Czapek-Dox/yeast extract medium amended with 0.2% w/v of cracked maize - and in vivo, i.e. during its growth on detached mature maize ears. This study pinpoints the role of oxylipins in a plant pathogen such as F. verticillioides and sets up a novel tool aimed at understanding the role oxylipins play in mycotoxigenic pathogens during their interactions with respective hosts.


Assuntos
Inspeção de Alimentos/métodos , Fusarium/química , Oxilipinas/análise , Sementes/química , Zea mays/química , Calibragem , Cromatografia Líquida de Alta Pressão , Contaminação de Alimentos , Fusarium/crescimento & desenvolvimento , Itália , Limite de Detecção , Estrutura Molecular , Oxilipinas/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Reprodutibilidade dos Testes , Sementes/crescimento & desenvolvimento , Sementes/microbiologia , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologia
14.
Front Microbiol ; 5: 74, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24578700

RESUMO

In some filamentous fungi, the pathways related to the oxidative stress and oxylipins production are involved both in the process of host-recognition and in the pathogenic phase. In fact, recent studies have shown that the production of oxylipins in filamentous fungi, yeasts and chromists is also related to the development of the organism itself and to mechanisms of communication with the host at the cellular level. The oxylipins, also produced by the host during defense reactions, are able to induce sporulation and to regulate the biosynthesis of mycotoxins in several pathogenic fungi. In A. flavus, the oxylipins play a crucial role as signals for regulating the biosynthesis of aflatoxins, the conidiogenesis and the formation of sclerotia. To investigate the involvement of an oxylipins based cross-talk into Z. mays and A. flavus interaction, we analyzed the oxylipins profile of the wild type strain and of three mutants of A. flavus that are deleted at the Aflox1 gene level also during maize kernel invasion. A lipidomic approach has been addressed through the use of LC-ToF-MS, followed by a statistical analysis of the principal components (PCA). The results showed the existence of a difference between the oxylipins profile generated by the WT and the mutants onto challenged maize. In relation to this, aflatoxin synthesis which is largely hampered in vitro, is intriguingly restored. These results highlight the important role of maize oxylipin in driving secondary metabolism in A. flavus.

15.
Front Microbiol ; 5: 669, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25566199

RESUMO

Oxylipins are fatty acid-derived signaling compounds produced by all eukaryotes so far investigated; in mycotoxigenic fungi, they modulate toxin production and interactions with the host plants. Among the many enzymes responsible for oxylipin generation, Linoleate Diol Synthase 1 (LDS1) produces mainly 8-hydroperoxyoctadecenoic acid and subsequently different di-hydroxyoctadecenoic acids. In this study, we inactivated a copy of the putative LDS1 ortholog (acc. N. FVEG_09294.3) of Fusarium verticillioides, with the aim to investigate its influence on the oxylipin profile of the fungus, on its development, secondary metabolism and virulence. LC-MS/MS oxylipin profiling carried out on the selected mutant strain revealed significant quali-quantitative differences for several oxylipins when compared to the WT strain. The Fvlds1-deleted mutant grew better, produced more conidia, synthesized more fumonisins and infected maize cobs faster than the WT strain. We hypothesize that oxylipins may act as regulators of gene expression in the toxigenic plant pathogen F. verticillioides, in turn causing notable changes in its phenotype. These changes could relate to the ability of oxylipins to re-shape the transcriptional profile of F. verticillioides by inducing chromatin modifications and exerting a direct control on the transcription of secondary metabolism in fungi.

16.
J Clin Invest ; 124(9): 3713-24, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25061872

RESUMO

The endocannabinoid system (ECS) regulates multiple physiological processes, including cutaneous cell growth and differentiation. Here, we explored the effects of the major nonpsychotropic phytocannabinoid of Cannabis sativa, (-)-cannabidiol (CBD), on human sebaceous gland function and determined that CBD behaves as a highly effective sebostatic agent. Administration of CBD to cultured human sebocytes and human skin organ culture inhibited the lipogenic actions of various compounds, including arachidonic acid and a combination of linoleic acid and testosterone, and suppressed sebocyte proliferation via the activation of transient receptor potential vanilloid-4 (TRPV4) ion channels. Activation of TRPV4 interfered with the prolipogenic ERK1/2 MAPK pathway and resulted in the downregulation of nuclear receptor interacting protein-1 (NRIP1), which influences glucose and lipid metabolism, thereby inhibiting sebocyte lipogenesis. CBD also exerted complex antiinflammatory actions that were coupled to A2a adenosine receptor-dependent upregulation of tribbles homolog 3 (TRIB3) and inhibition of the NF-κB signaling. Collectively, our findings suggest that, due to the combined lipostatic, antiproliferative, and antiinflammatory effects, CBD has potential as a promising therapeutic agent for the treatment of acne vulgaris.


Assuntos
Anti-Inflamatórios/farmacologia , Canabidiol/farmacologia , Glândulas Sebáceas/efeitos dos fármacos , Acne Vulgar/tratamento farmacológico , Acne Vulgar/etiologia , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Humanos , Lipogênese/efeitos dos fármacos , Glândulas Sebáceas/citologia , Glândulas Sebáceas/patologia , Sebo/fisiologia , Canais de Cátion TRPV/fisiologia
17.
Pigment Cell Melanoma Res ; 26(1): 113-27, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22863076

RESUMO

We have discovered a new α-melanocyte stimulating hormone (α-MSH)/peroxisome proliferator activated receptor-γ (PPAR-γ) connection in B16-F10 cells. Both PPAR-γ up-regulation and its induction as an active transcription factor were observed in response to α-MSH. The α-MSH/PPAR-γ connection influenced both pigmentation and proliferation. The forskolin-stimulated cAMP/PKA pathway was not able to induce either PPAR-γ translocation into the nucleus or PPAR-γ transcriptional activity. As the melanocortin-1 receptor, the specific receptor for the α-MSH, is a G-protein coupled receptor, we wondered whether the phosphatidylinositol [PI(4,5)P(2) /PLC(ß) ] signal pathway was involved in mediating the α-MSH-dependent PPAR-γ activation. Employing inhibitors of PI(4,5)P(2) /PLC(ß) pathway, the results of our experiments suggested that this pathway was promoted by α-MSH and that α-MSH played a role in mediating PPAR-γ activation. We have demonstrated, for the first time, that α-MSH induces the PI(4,5)P(2) /PLC(ß) pathway, through analysis of the basic steps of the pathway. The α-MSH effect on PPAR-γ was independent of animal species and was not correlated with the physio-pathological status.


Assuntos
Melanoma Experimental/metabolismo , PPAR gama/metabolismo , Neoplasias Cutâneas/metabolismo , alfa-MSH/farmacologia , Animais , Ácido Araquidônico/metabolismo , Cálcio/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Diglicerídeos/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Hidrólise/efeitos dos fármacos , Fosfatos de Inositol/metabolismo , Melanoma Experimental/genética , Melanoma Experimental/patologia , Camundongos , PPAR gama/genética , Fosfolipase C beta/metabolismo , Transporte Proteico/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia
18.
PLoS One ; 8(3): e59782, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23555779

RESUMO

Vitiligo is characterized by the progressive disappearance of pigment cells from skin and hair follicle. Several in vitro and in vivo studies show evidence of an altered redox status, suggesting that loss of cellular redox equilibrium might be the pathogenic mechanism in vitiligo. However, despite the numerous data supporting a pathogenic role of oxidative stress, there is still no consensus explanation underlying the oxidative stress-driven disappear of melanocytes from the epidermis. In this study, in vitro characterization of melanocytes cultures from non-lesional vitiligo skin revealed at the cellular level aberrant function of signal transduction pathways common with neurodegenerative diseases including modification of lipid metabolism, hyperactivation of mitogen-activated protein kinase (MAPK) and cAMP response element-binding protein (CREB), constitutive p53-dependent stress signal transduction cascades, and enhanced sensibility to pro-apoptotic stimuli. Notably, these long-term effects of subcytotoxic oxidative stress are also biomarkers of pre-senescent cellular phenotype. Consistent with this, vitiligo cells showed a significant increase in p16 that did not correlate with the chronological age of the donor. Moreover, vitiligo melanocytes produced many biologically active proteins among the senescence-associated secretory phenotype (SAPS), such as interleukin-6 (IL-6), matrix metallo proteinase-3 (MMP3), cyclooxygenase-2 (Cox-2), insulin-like growth factor-binding protein-3 and 7 (IGFBP3, IGFBP7). Together, these data argue for a complicated pathophysiologic puzzle underlying melanocytes degeneration resembling, from the biological point of view, neurodegenerative diseases. Our results suggest new possible targets for intervention that in combination with current therapies could correct melanocytes intrinsic defects.


Assuntos
Vitiligo/diagnóstico , Vitiligo/fisiopatologia , Adolescente , Adulto , Apoptose , Biópsia , Proliferação de Células , Sobrevivência Celular , Senescência Celular , Criança , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Epiderme/metabolismo , Feminino , Citometria de Fluxo , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Imuno-Histoquímica , Lipídeos/química , Sistema de Sinalização das MAP Quinases , Masculino , Melanócitos/citologia , Pessoa de Meia-Idade , Oxirredução , Estresse Oxidativo , Fenótipo , Espécies Reativas de Oxigênio , Proteína Supressora de Tumor p53/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA