RESUMO
The phytohormone jasmonic acid (JA) is vital in plant defense and development. Although biosynthesis of JA and activation of JA-responsive gene expression by the bioactive form JA-isoleucine have been well-studied, knowledge on JA metabolism is incomplete. In particular, the enzyme that hydroxylates JA to 12-OH-JA, an inactive form of JA that accumulates after wounding and pathogen attack, is unknown. Here, we report the identification of four paralogous 2-oxoglutarate/Fe(II)-dependent oxygenases in Arabidopsis thaliana as JA hydroxylases and show that they down-regulate JA-dependent responses. Because they are induced by JA we named them JASMONATE-INDUCED OXYGENASES (JOXs). Concurrent mutation of the four genes in a quadruple Arabidopsis mutant resulted in increased defense gene expression and increased resistance to the necrotrophic fungus Botrytis cinerea and the caterpillar Mamestra brassicae In addition, root and shoot growth of the plants was inhibited. Metabolite analysis of leaves showed that loss of function of the four JOX enzymes resulted in overaccumulation of JA and in reduced turnover of JA into 12-OH-JA. Transformation of the quadruple mutant with each JOX gene strongly reduced JA levels, demonstrating that all four JOXs inactivate JA in plants. The in vitro catalysis of 12-OH-JA from JA by recombinant enzyme could be confirmed for three JOXs. The identification of the enzymes responsible for hydroxylation of JA reveals a missing step in JA metabolism, which is important for the inactivation of the hormone and subsequent down-regulation of JA-dependent defenses.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Oxigenases/metabolismo , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Imunidade Vegetal , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ciclopentanos/antagonistas & inibidores , Regulação para Baixo , Genes de Plantas , Hidroxilação , Família Multigênica , Mutação , Oxigenases/genética , Oxilipinas/antagonistas & inibidores , Reguladores de Crescimento de Plantas/antagonistas & inibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismoRESUMO
Arabidopsis downy mildew resistant 6 (dmr6) mutants have lost their susceptibility to the downy mildew Hyaloperonospora arabidopsidis. Here we show that dmr6 is also resistant to the bacterium Pseudomonas syringae and the oomycete Phytophthora capsici. Resistance is accompanied by enhanced defense gene expression and elevated salicylic acid levels. The suppressive effect of the DMR6 oxygenase was confirmed in transgenic Arabidopsis lines overexpressing DMR6 that show enhanced susceptibility to H. arabidopsidis, P. capsici, and P. syringae. Phylogenetic analysis of the superfamily of 2-oxoglutarate Fe(II)-dependent oxygenases revealed a subgroup of DMR6-LIKE OXYGENASEs (DLOs). Within Arabidopsis, DMR6 is most closely related to DLO1 and DLO2. Overexpression of DLO1 and DLO2 in the dmr6 mutant restored the susceptibility to downy mildew indicating that DLOs negatively affect defense, similar to DMR6. DLO1, but not DLO2, is co-expressed with DMR6, showing strong activation during pathogen attack and following salicylic acid treatment. DMR6 and DLO1 differ in their spatial expression pattern in downy mildew-infected Arabidopsis leaves; DMR6 is mostly expressed in cells that are in contact with hyphae and haustoria of H. arabidopsidis, while DLO1 is expressed mainly in the vascular tissues near infection sites. Strikingly, the dmr6-3_dlo1 double mutant, that is completely resistant to H. arabidopsidis, showed a strong growth reduction that was associated with high levels of salicylic acid. We conclude that DMR6 and DLO1 redundantly suppress plant immunity, but also have distinct activities based on their differential localization of expression.
Assuntos
Arabidopsis/metabolismo , Arabidopsis/microbiologia , Doenças das Plantas/microbiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Oomicetos/patogenicidade , Doenças das Plantas/genética , Imunidade Vegetal/genética , Imunidade Vegetal/fisiologia , Pseudomonas syringae/patogenicidadeRESUMO
Arabidopsis plants in their natural environment are susceptible to infection by oomycete pathogens, in particular to downy mildew and white rust diseases. These naturally occurring infectious agents have imposed evolutionary pressures on Arabidopsis populations and are therefore highly relevant for the study of host-pathogen co-evolution. In addition, the study of oomycete diseases, including infections caused by several Phytophthora species, has led to many scientific discoveries on Arabidopsis immunity and disease. Herein, we describe the major oomycete species used for experiments on Arabidopsis, and how these pathosystems have been used to provide significant insights into mechanistic and evolutionary aspects of plant-oomycete interactions. We also highlight understudied aspects of plant-oomycete interactions, as well as translational approaches, that can be productively addressed using the reference pathosystems described in this article.