Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Tipo de estudo
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Respir Cell Mol Biol ; 46(4): 461-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22052879

RESUMO

Both hyperoxia and mechanical ventilation can independently cause lung injury. In combination, these insults produce accelerated and severe lung injury. We recently reported that pre-exposure to hyperoxia for 12 hours, followed by ventilation with large tidal volumes, induced significant lung injury and epithelial cell apoptosis compared with either stimulus alone. We also reported that such injury and apoptosis are inhibited by antioxidant treatment. In this study, we hypothesized that apoptosis signal-regulating kinase-1 (ASK-1), a redox-sensitive, mitogen-activated protein kinase kinase kinase, plays a role in lung injury and apoptosis in this model. To determine the role of ASK-1 in lung injury, the release of inflammatory mediators and apoptosis, attributable to 12 hours of hyperoxia, were followed by large tidal volume mechanical ventilation with hyperoxia. Wild-type and ASK-1 knockout mice were subjected to hyperoxia (Fi(O(2)) = 0.9) for 12 hours before 4 hours of large tidal mechanical ventilation (tidal volume = 25 µl/g) with hyperoxia, and were compared with nonventilated control mice. Lung injury, apoptosis, and cytokine release were measured. The deletion of ASK-1 significantly inhibited lung injury and apoptosis, but did not affect the release of inflammatory mediators, compared with the wild-type mice. ASK-1 is an important regulator of lung injury and apoptosis in this model. Further study is needed to determine the mechanism of lung injury and apoptosis by ASK-1 and its downstream mediators in the lung.


Assuntos
MAP Quinase Quinase Quinase 5/genética , MAP Quinase Quinase Quinase 5/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/enzimologia , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Animais , Apoptose/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Ativação Enzimática , Células Epiteliais/patologia , Feminino , Hiperóxia/enzimologia , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Knockout , Alvéolos Pulmonares/patologia , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia
2.
Am J Physiol Lung Cell Mol Physiol ; 299(5): L711-9, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20833778

RESUMO

Both high tidal volume mechanical ventilation (HV) and hyperoxia (HO) have been implicated in ventilator-induced lung injury. However, patients with acute lung injury are often exposed to HO before the application of mechanical ventilation. The potential priming of the lungs for subsequent injury by exposure to HO has not been extensively studied. We provide evidence that HO (90%) for 12 h followed by HV (25 µl/g) combined with HO for 2 or 4 h (HO-12h+HVHO-2h or -4h) induced severe lung injury in mice. Analysis of lung homogenates showed that lung injury was associated with cleavage of executioner caspases, caspases-3 and -7, and their downstream substrate poly(ADP-ribose) polymerase-1 (PARP-1). No significant lung injury or caspase cleavage was seen with either HO for 16 h or HV for up to 4 h. Ventilation for 4 h with HO (HVHO) did not cause significant lung injury without preexposure to HO. Twelve-hour HO followed by lower tidal volume (6 µl/g) mechanical ventilation failed to produce significant injury or caspase cleavage. We also evaluated the initiator caspases, caspases-8 and -9, to determine whether the death receptor or mitochondrial-mediated pathways were involved. Caspase-9 cleavage was observed in HO-12h+HVHO-2h and -4h as well as HO for 16 h. Caspase-8 activation was observed only in HO-12h+HVHO-4h, indicating the involvement of both pathways. Immunohistochemistry and in vitro stretch studies showed caspase cleavage in alveolar epithelial cells. In conclusion, preexposure to HO followed by HV produced severe lung injury associated with alveolar epithelial cell apoptosis.


Assuntos
Apoptose/fisiologia , Células Epiteliais/patologia , Células Epiteliais/fisiologia , Hiperóxia/complicações , Volume de Ventilação Pulmonar , Lesão Pulmonar Induzida por Ventilação Mecânica/etiologia , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia , Animais , Caspases/metabolismo , Linhagem Celular , Ativação Enzimática , Células Epiteliais/citologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Poli Adenosina Difosfato Ribose/metabolismo , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Respiração Artificial/efeitos adversos , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA