Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Med Res Rev ; 44(4): 1923-1966, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38500405

RESUMO

Over the past few decades, there has been a notable increase in the global burden of central nervous system (CNS) diseases. Despite advances in technology and therapeutic options, neurological and neurodegenerative disorders persist as significant challenges in treatment and cure. Recently, there has been a remarkable surge of interest in extracellular vesicles (EVs) as pivotal mediators of intercellular communication. As carriers of molecular cargo, EVs demonstrate the ability to traverse the blood-brain barrier, enabling bidirectional communication. As a result, they have garnered attention as potential biomarkers and therapeutic agents, whether in their natural form or after being engineered for use in the CNS. This review article aims to provide a comprehensive introduction to EVs, encompassing various aspects such as their diverse isolation methods, characterization, handling, storage, and different routes for EV administration. Additionally, it underscores the recent advances in their potential applications in neurodegenerative disorder therapeutics. By exploring their unique capabilities, this study sheds light on the promising future of EVs in clinical research. It considers the inherent challenges and limitations of these emerging applications while incorporating the most recent updates in the field.


Assuntos
Vesículas Extracelulares , Humanos , Vesículas Extracelulares/metabolismo , Animais , Doenças Neurodegenerativas/terapia , Barreira Hematoencefálica/metabolismo , Doenças do Sistema Nervoso/terapia
2.
Biol Res ; 57(1): 8, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475854

RESUMO

The central nervous system (CNS) is home to neuronal and glial cells. Traditionally, glia was disregarded as just the structural support across the brain and spinal cord, in striking contrast to neurons, always considered critical players in CNS functioning. In modern times this outdated dogma is continuously repelled by new evidence unravelling the importance of glia in neuronal maintenance and function. Therefore, glia replacement has been considered a potentially powerful therapeutic strategy. Glial progenitors are at the center of this hope, as they are the source of new glial cells. Indeed, sophisticated experimental therapies and exciting clinical trials shed light on the utility of exogenous glia in disease treatment. Therefore, this review article will elaborate on glial-restricted progenitor cells (GRPs), their origin and characteristics, available sources, and adaptation to current therapeutic approaches aimed at various CNS diseases, with particular attention paid to myelin-related disorders with a focus on recent progress and emerging concepts. The landscape of GRP clinical applications is also comprehensively presented, and future perspectives on promising, GRP-based therapeutic strategies for brain and spinal cord diseases are described in detail.


Assuntos
Bainha de Mielina , Neuroglia , Neuroglia/fisiologia , Bainha de Mielina/fisiologia , Células-Tronco , Medula Espinal , Encéfalo
3.
Int J Mol Sci ; 23(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35269609

RESUMO

Cell transplantation has been studied extensively as a therapeutic strategy for neurological disorders. However, to date, its effectiveness remains unsatisfactory due to low precision and efficacy of cell delivery; poor survival of transplanted cells; and inadequate monitoring of their fate in vivo. Fortunately, different bio-scaffolds have been proposed as cell carriers to improve the accuracy of cell delivery, survival, differentiation, and controlled release of embedded stem cells. The goal of our study was to establish hydrogel scaffolds suitable for stem cell delivery that also allow non-invasive magnetic resonance imaging (MRI). We focused on alginate-based hydrogels due to their natural origin, biocompatibility, resemblance to the extracellular matrix, and easy manipulation of gelation processes. We optimized the properties of alginate-based hydrogels, turning them into suitable carriers for transplanted cells. Human adipose-derived stem cells embedded in these hydrogels survived for at least 14 days in vitro. Alginate-based hydrogels were also modified successfully to allow their injectability via a needle. Finally, supplementing alginate hydrogels with Mn ions or Mn nanoparticles allowed for their visualization in vivo using manganese-enhanced MRI. We demonstrated that modified alginate-based hydrogels can support therapeutic cells as MRI-detectable matrices.


Assuntos
Alginatos , Hidrogéis , Transplante de Células , Humanos , Íons , Manganês
4.
Stem Cells ; 37(7): 855-864, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30977255

RESUMO

It was shown as long as half a century ago that bone marrow is a source of not only hematopoietic stem cells, but also stem cells of mesenchymal tissues. Then the term "mesenchymal stem cells" (MSCs) was coined in the early 1990s, and more than a decade later, the criteria for defining MSCs have been released by the International Society for Cellular Therapy. The easy derivation from a variety of fetal and adult tissues and undemanding cell culture conditions made MSCs an attractive research object. It was followed by the avalanche of reports from preclinical studies on potentially therapeutic properties of MSCs, such as immunomodulation, trophic support and capability for a spontaneous differentiation into connective tissue cells, and differentiation into the majority of cell types upon specific inductive conditions. Although ontogenesis, niche, and heterogeneity of MSCs are still under investigation, there is a rapid boost of attempts at clinical applications of MSCs, especially for a flood of civilization-driven conditions in so quickly aging societies, not only in the developed countries, but also in the populous developing world. The fields of regenerative medicine and oncology are particularly extensively addressed by MSC applications, in part due to the paucity of traditional therapeutic options for these highly demanding and costly conditions. There are currently almost 1,000 clinical trials registered worldwide at ClinicalTrials.gov, and it seems that we are starting to witness the snowball effect with MSCs becoming a powerful global industry; however, the spectacular effects of MSCs in the clinic still need to be shown. Stem Cells 2019;37:855-864.


Assuntos
Células da Medula Óssea/citologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Medicina Regenerativa/métodos , Adipócitos/citologia , Adipócitos/imunologia , Adulto , Animais , Células da Medula Óssea/imunologia , Comunicação Celular , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Proliferação de Células , Condrócitos/citologia , Condrócitos/imunologia , Humanos , Imunomodulação , Células-Tronco Mesenquimais/imunologia , Neurônios/citologia , Neurônios/imunologia , Osteoblastos/citologia , Osteoblastos/imunologia
5.
J Neuroinflammation ; 16(1): 216, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31722731

RESUMO

BACKGROUND: Ischemic stroke is the major cause of long-term severe disability and death in aged population. Cell death in the infarcted region of the brain induces immune reaction leading to further progression of tissue damage. Immunomodulatory function of mesenchymal stem cells (MSCs) has been shown in multiple preclinical studies; however, it has not been successfully translated to a routine clinical practice due to logistical, economical, regulatory, and intellectual property obstacles. It has been recently demonstrated that therapeutic effect of intravenously administered MSCs can be recapitulated by extracellular vesicles (EVs) derived from them. However, in contrast to MSCs, EVs were not capable to decrease stroke-induced neuroinflammation. Therefore, the aim of the study was to investigate if intra-arterial delivery of MSC-derived EVs will have stronger impact on focal brain injury-induced neuroinflammation, which mimics ischemic stroke, and how it compares to MSCs. METHODS: The studies were performed in adult male Wistar rats with focal brain injury induced by injection of 1 µl of 50 nmol ouabain into the right hemisphere. Two days after brain insult, 5 × 105 human bone marrow MSCs (hBM-MSCs) labeled with Molday ION or 1.3 × 109 EVs stained with PKH26 were intra-arterially injected into the right hemisphere under real-time MRI guidance. At days 1, 3, and 7 post-transplantation, the rats were decapitated, the brains were removed, and the presence of donor cells or EVs was analyzed. The cellular immune response in host brain was evaluated immunohistochemically, and humoral factors were measured by multiplex immunoassay. RESULTS: hBM-MSCs and EVs transplanted intra-arterially were observed in the rat ipsilateral hemisphere, near the ischemic region. Immunohistochemical analysis of brain tissue showed that injection of hBM-MSCs or EVs leads to the decrease of cell activation by ischemic injury, i.e., astrocytes, microglia, and infiltrating leucocytes, including T cytotoxic cells. Furthermore, we observed significant decrease of pro-inflammatory cytokines and chemokines after hBM-MSC or EV infusion comparing with non-treated rats with focal brain injury. CONCLUSIONS: Intra-arterially injected EVs attenuated neuroinflammation evoked by focal brain injury, which mimics ischemic stroke, and this effect was comparable to intra-arterial hBM-MSC transplantation. Thus, intra-arterial injection of EVs might be an attractive therapeutic approach, which obviates MSC-related obstacles.


Assuntos
Lesões Encefálicas/terapia , Encefalite/terapia , Vesículas Extracelulares/metabolismo , Transplante de Células-Tronco Mesenquimais , Animais , Células da Medula Óssea/metabolismo , Lesões Encefálicas/complicações , Lesões Encefálicas/metabolismo , Quimiocinas/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Encefalite/etiologia , Encefalite/metabolismo , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Ratos , Ratos Wistar
6.
J Neuroinflammation ; 16(1): 178, 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31514749

RESUMO

Ischemic stroke is the third cause of death in the developed countries and the main reason of severe disability. Brain ischemia leads to the production of damage-associated molecular patterns (DAMPs) by neurons and glial cells which results in astrocyte and microglia activation, pro-inflammatory cytokines and chemokines production, blood-brain barrier (BBB) disruption, infiltration of leukocytes from the peripheral blood into the infarcted area, and further exacerbation of tissue damage. However, some immune cells such as microglia or monocytes are capable to change their phenotype to anti-inflammatory, produce anti-inflammatory cytokines, and protect injured nervous tissue. In this situation, therapies, which will modulate the immune response after brain ischemia, such as transplantation of mesenchymal stem cells (MSCs) are catching interest. Many experimental studies of ischemic stroke revealed that MSCs are able to modulate immune response and act neuroprotective, through stimulation of neurogenesis, oligodendrogenesis, astrogenesis, and angiogenesis. MSCs may also have an ability to replace injured cells, but the release of paracrine factors directly into the environment or via extracellular vesicles (EVs) seems to play the most pronounced role. EVs are membrane structures containing proteins, lipids, and nucleic acids, and they express similar properties as the cells from which they are derived. However, EVs have lower immunogenicity, do not express the risk of vessel blockage, and have the capacity to cross the blood-brain barrier. Experimental studies of ischemic stroke showed that EVs have immunomodulatory and neuroprotective properties; therefore, they can stimulate neurogenesis and angiogenesis. Up to now, 20 clinical trials with MSC transplantation into patients after stroke were performed, from which two concerned on only hemorrhagic stroke and 13 studied only on ischemic stroke. There is no clinical trial with EV injection into patients after brain ischemia so far, but the case with miR-124-enriched EVs administration is planned and probably there will be more clinical studies with EV transplantation in the near future.


Assuntos
Vesículas Extracelulares/transplante , Transplante de Células-Tronco Mesenquimais/métodos , Acidente Vascular Cerebral/terapia , Animais , Humanos , Inflamação/etiologia , Inflamação/patologia , Inflamação/terapia , Acidente Vascular Cerebral/patologia
7.
Stem Cells ; 35(6): 1446-1460, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28316123

RESUMO

Mesenchymal stem cells (MSCs) are promising candidates for adult cell therapies in regenerative medicine. To fully exert their potential, efficient homing and migration toward lesion sites play an important role. Local transplantation deposits MSC in spatial proximity to the lesion, but often requires invasive procedures. Systemic administration routes are favored, but require the targeted extravasation of the circulating MSC at the site of injury. Transplanted MSC can indeed leave the blood flow and transmigrate through the endothelial barrier, and reach the lesion site. However, the underlying processes are not completely dissolved yet. Recent in vitro and in vivo research identified some key molecules scattered light on the extravasation mechanism. This review provides a detailed overview over the current knowledge of MSC transendothelial migration. We use the leukocyte extravasation process as a role model to build a comprehensive concept of MSC egress mechanisms from the blood stream and identified relevant similarities as well as important differences between the extravasation mechanisms. Stem Cells 2017;35:1446-1460.


Assuntos
Células-Tronco Mesenquimais/citologia , Migração Transendotelial e Transepitelial , Animais , Adesão Celular , Células Endoteliais/citologia , Humanos , Transplante de Células-Tronco Mesenquimais , Transdução de Sinais
8.
Cytotherapy ; 16(7): 881-92, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24726658

RESUMO

BACKGROUND AIMS: As we approach the era of mesenchymal stem cell (MSC) application in the medical clinic, the standarization of their culture conditions are of the particular importance. We re-evaluated the influences of oxygens concentration on proliferation, stemness and differentiation of human umbilical cord Wharton Jelly-derived MSCs (WJ-MSCs). METHODS: Primary cultures growing in 21% oxygen were either transferred into 5% O2 or continued to grow under standard 21% oxygen conditions. Cell expansion was estimated by WST1/enzyme-linked immunosorbent assay or cell counting. After 2 or 4 weeks of culture, cell phenotypes were evaluated using microscopic, immunocytochemical, fluorescence-activated cell-sorting and molecular methods. Genes and proteins typical of mesenchymal cells, committed neural cells or more primitive stem/progenitors (Oct4A, Nanog, Rex1, Sox2) and hypoxia inducible factor (HIF)-1α-3α were evaluated. RESULTS: Lowering O2 concentration from 21% to the physiologically relevant 5% level substantially affected cell characteristics, with induction of stemness-related-transcription-factor and stimulation of cell proliferative capacity, with increased colony-forming unit fibroblasts (CFU-F) centers exerting OCT4A, NANOG and HIF-1α and HIF-2α immunoreactivity. Moreover, the spontaneous and time-dependent ability of WJ-MSCs to differentiate into neural lineage under 21% O2 culture was blocked in the reduced oxygen condition. Importantly, treatment with trichostatin A (TSA, a histone deacetylase inhibitor) suppressed HIF-1α and HIF-2α expression, in addition to blockading the cellular effects of reduced oxygen concentration. CONCLUSIONS: A physiologically relevant microenvironment of 5% O2 rejuvenates WJ-MSC culture toward less-differentiated, more primitive and faster-growing phenotypes with involvement of HIF-1α and HIF-2α-mediated and TSA-sensitive chromatin modification mechanisms. These observations add to the understanding of MSC responses to defined culture conditions, which is the most critical issue for adult stem cells translational applications.


Assuntos
Proliferação de Células/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Oxigênio/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Cordão Umbilical/citologia , Técnicas de Cultura de Células , Transplante de Células-Tronco de Sangue do Cordão Umbilical/métodos , Humanos , Ácidos Hidroxâmicos/administração & dosagem , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo
9.
Arch Biochem Biophys ; 534(1-2): 88-97, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23466243

RESUMO

Increasing global birth rate, coupled with the aging population surviving into their eighth decade has lead to increased incidence diseases, hitherto designated as rare. Brain related ischemia, at birth, or later in life, during, for example stroke, is increasing in global prevalence. Reactive microglia can contribute to neuronal damage as well as compromising transplantion. One potential treatment strategy is cellular therapy, using mesenchymal stem cells (hMSCs), which possess immunomodulatory and cell repair properties. For effective clinical therapy, mechanisms of action must be understood better. Here multicentre international laboratories assessed this question together investigating application of hMSCs neural involvement, with interest in the role of reactive microglia. Modulation by hMSCs in our in vivo and in vitro study shows they decrease markers of microglial activation (lower ED1 and Iba) and astrogliosis (lower GFAP) following transplantation in an ouabain-induced brain ischemia rat model and in organotypic hippocampal cultures. The anti-inflammatory effect in vitro was demonstrated to be CD200 ligand dependent with ligand expression shown to be increased by IL-4 stimulation. hMSC transplant reduced rat microglial STAT3 gene expression and reduced activation of Y705 phosphorylated STAT3, but STAT3 in the hMSCs themselves was elevated upon grafting. Surprisingly, activity was dependent on heterodimerisation with STAT1 activated by IL-4 and Oncostatin M. Our study paves the way to preclinical stages of a clinical trial with hMSC, and suggests a non-canonical JAK-STAT signaling of unphosphorylated STAT3 in immunomodulatory effects of hMSCs.


Assuntos
Lesões Encefálicas/imunologia , Isquemia Encefálica/metabolismo , Inflamação/imunologia , Células-Tronco Mesenquimais/metabolismo , Animais , Antígenos CD/imunologia , Antígenos CD/metabolismo , Astrócitos/citologia , Astrócitos/metabolismo , Western Blotting , Lesões Encefálicas/metabolismo , Isquemia Encefálica/imunologia , Antígenos CD40/genética , Técnicas de Cocultura , Ectodisplasinas/metabolismo , Hipocampo/citologia , Hipocampo/imunologia , Hipocampo/metabolismo , Humanos , Imuno-Histoquímica , Fatores Imunológicos/genética , Fatores Imunológicos/imunologia , Fatores Imunológicos/metabolismo , Inflamação/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Interleucina-4/imunologia , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia , Microglia/citologia , Microglia/imunologia , Microglia/metabolismo , Modelos Animais , Fosforilação , Cultura Primária de Células , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Cordão Umbilical/citologia
10.
Mol Ther Nucleic Acids ; 33: 454-468, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37588684

RESUMO

We previously have shown that mRNA-based engineering may enhance mesenchymal stem cell (MSC) trafficking. However, optimal conditions for in vitro mRNA engineering of MSCs are unknown. Here, we investigated several independent variables: (1) transfection factor (Lipofectamine 2000 vs. TransIT), (2) mRNA purification method (spin column vs. high-performance liquid chromatography [HPLC] column), and (3) mRNA capping (ARCA vs. ß-S-ARCA D1 and ß-S-ARCA D2). Dependent variables included protein production based on mRNA template (measured by the bioluminescence of reporter gene luciferase over hours), MSC metabolic activity corresponding with their wellbeing measured by CCK-8 over days, and endogenous expression of genes by RT-qPCR related to innate intracellular immune response and decapping at two time points: days 2 and 5. We have found that Lipofectamine 2000 outperforms TransIT, and used it throughout the study. Then, we showed that mRNA must be purified by HPLC to be relatively neutral to MSCs in terms of metabolic activity and endogenous protein production. Ultimately, we demonstrated that ß-S-ARCA D1 enables higher protein production but at the cost of lower MSC metabolic activity, with no impact on RT-qPCR results. Thus Lipofectamine 2000-based in vitro transfection of HPLC-purified and ARCA- or ß-S-ARCA D1-capped mRNA is optimal for MSC engineering.

11.
Cell Biosci ; 13(1): 137, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37501215

RESUMO

The blood-brain barrier (BBB) is a sophisticated structure whose full functionality is required for maintaining the executive functions of the central nervous system (CNS). Tight control of transport across the barrier means that most drugs, particularly large size, which includes powerful biologicals, cannot reach their targets in the brain. Notwithstanding the remarkable advances in characterizing the cellular nature of the BBB and consequences of BBB dysfunction in pathology (brain metastasis, neurological diseases), it remains challenging to deliver drugs to the CNS. Herein, we outline the basic architecture and key molecular constituents of the BBB. In addition, we review the current status of approaches that are being explored to temporarily open the BBB in order to allow accumulation of therapeutics in the CNS. Undoubtedly, the major concern in field is whether it is possible to open the BBB in a meaningful way without causing negative consequences. In this context, we have also listed few other important key considerations that can improve our understanding about the dynamics of the BBB.

12.
Bioengineering (Basel) ; 10(4)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37106614

RESUMO

This work aims to engineer a new stable injectable Mn-based methacrylated gellan gum (Mn/GG-MA) hydrogel for real-time monitored cell delivery into the central nervous system. To enable the hydrogel visualization under Magnetic Resonance Imaging (MRI), GG-MA solutions were supplemented with paramagnetic Mn2+ ions before its ionic crosslink with artificial cerebrospinal fluid (aCSF). The resulting formulations were stable, detectable by T1-weighted MRI scans and also injectable. Cell-laden hydrogels were prepared using the Mn/GG-MA formulations, extruded into aCSF for crosslink, and after 7 days of culture, the encapsulated human adipose-derived stem cells remained viable, as assessed by Live/Dead assay. In vivo tests, using double mutant MBPshi/shi/rag2 immunocompromised mice, showed that the injection of Mn/GG-MA solutions resulted in a continuous and traceable hydrogel, visible on MRI scans. Summing up, the developed formulations are suitable for both non-invasive cell delivery techniques and image-guided neurointerventions, paving the way for new therapeutic procedures.

13.
Antioxidants (Basel) ; 11(6)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35739947

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive, fatal disease with no effective therapy. The neurodegenerative character of ALS was an appealing target for stem cell-based regenerative approaches. Different types of stem cells have been transplanted in both preclinical and clinical settings, but no convincing outcomes have been noted. Human glial restricted precursors (hGRPs) transplanted intraventricularly to neonatal, immunodeficient mice rescued lifespan of dysmyelinated mice. Intraspinal injection of hGRPs also provided benefits in the mouse model of ALS. Therefore, we have recently developed an immunodeficient model of ALS (double mutant SOD1/rag2), and, in this study, we tested the strategy previously used in dysmyelinated mice of intraventricular transplantation of hGRPs to immunodeficient mice. To maximize potential therapeutic benefits, the cells were implanted into neonates. We used magnetic resonance imaging to investigate the progression of neurodegeneration and therapeutic responses. A cohort of animals was devoted to survival assessment. Postmortem analysis included immunohistochemistry, Nissl staining, and Western blots. Cell transplantation was not associated with improved animal survival, slowing neurodegeneration, or accumulation of misfolded superoxide dismutase 1. Postmortem analysis did not reveal any surviving hGRPs. Grafting into neonatal immunodeficient recipients did not prevent ALS-induced cell loss, which might explain the lack of positive therapeutic effects. The results of this study are in line with the modest effects of clinical neurotransplantations. Therefore, we urge stem cell and ALS communities to develop and implement cell tracking methods to better understand cell fates in the clinic.

14.
Sci Rep ; 12(1): 1548, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35091645

RESUMO

Planning is a fundamental mental ability related to executive functions. It allows to select, order and execute subgoals to achieve a goal. Studies have indicated that these processes are characterised by a specific temporal dynamics reflected in temporal information processing (TIP) in some tens of millisecond domain. Both planning and TIP decline with age but the underlying mechanisms are unclear. The novel value of the present study was to examine these mechanisms in young (n = 110) and elderly (n = 91) participants in Tower of London task, considering two structural properties of problems: search depth related to static maintenance in working memory, and goal ambiguity reflecting dynamic cognitive flexibility. Results revealed that TIP predicted planning accuracy both directly and indirectly (via preplanning) but only in young participants in problems characterised by high goal ambiguity. Better planning is related to longer preplanning and more efficient TIP. This result demonstrates for the first time age-related differences in the contribution of TIP to planning. In young participants TIP contributed to dynamic cognitive flexibility, but not to static maintenance processes. In elderly such relation was not observed probably because the deficient planning might depend on working memory maintenance rather than on cognitive flexibility.


Assuntos
Função Executiva
15.
RSC Adv ; 12(41): 26882-26894, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36320849

RESUMO

In situ crosslinked materials are the main interests of both scientific and industrial research. Methylcellulose (MC) aqueous solution is one of the representatives that belongs to this family of thermosensitive materials. At room temperature, MC is a liquid whereupon during temperature increase up to 37 °C, it crosslinks physically and turns into a hydrogel. This feature makes it unique, especially for tissue engineering applications. However, the crosslinking rate of MC alone is relatively slow considering tissue engineering expectations. According to these expectations, the crosslinking should take place slowly enough to allow for complete injection and fill the injury avoiding clogging in the needle, and simultanously, it should be sufficiently fast to prevent it from relocation from the lesion. One of the methods to overcome this problem is MC blending with another substance that increases the crosslinking rate of MC. In these studies, we used agarose (AGR). These studies aim to investigate the effect of different AGR amounts on MC crosslinking kinetics, and thermal, viscoelastic, and biological properties. Differential Scanning Calorimetry (DSC) and dynamic mechanical analysis (DMA) measurements proved that AGR addition accelerates the beginning of MC crosslinking. This phenomenon resulted from AGR's greater affinity to water, which is crucial in this particular crosslinking part. In vitro tests, carried out using the L929 fibroblast line and mesenchymal stem cells (MSCs), confirmed that most of the hydrogel samples were non-cytotoxic in contact with extracts and directly with cells. Not only does this type of thermosensitive hydrogel system provide excellent mechanical and biological cues but also its stimuli-responsive character provides more novel functionalities for designing innovative scaffold/cell delivery systems for tissue engineering applications.

16.
Artigo em Inglês | MEDLINE | ID: mdl-35270756

RESUMO

Social sciences researchers emphasize that new technologies can overcome the limitations of small and homogenous samples. In research on early language development, which often uses parental reports, taking the testing online might be particularly compelling. Due to logistical limitations, previous studies on bilingual children have explored the language development trajectories in general (e.g., by including few and largely set apart timepoints), or focused on small, homogeneous samples. The present study protocol presents a new, on-going study which uses new technologies to collect longitudinal data continuously from parents of multilingual, bilingual, and monolingual children. Our primary aim is to establish the developmental trajectories in Polish-British English and Polish-Norwegian bilingual children and Polish monolingual children aged 0-3 years with the use of mobile and web-based applications. These tools allow parents to report their children's language development as it progresses, and allow us to characterize children's performance in each language (the age of reaching particular language milestones). The project's novelty rests on its use of mobile technologies to characterize the bilingual and monolingual developmental trajectory from the very first words to broader vocabulary and multiword combinations.


Assuntos
Aplicativos Móveis , Multilinguismo , Criança , Humanos , Idioma , Desenvolvimento da Linguagem , Testes de Linguagem
17.
Int J Occup Saf Ergon ; 27(4): 1056-1063, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34082652

RESUMO

Shift work can be associated with health and sleep problems, which may lead to cognitive impairment. This study investigated the effects of shift work on sleep, health behaviours and cognitive functions of Polish rescue service workers. We tested 18 paramedics working 12-h shifts, 15 firefighters working 24-h shifts and 17 daytime workers. We measured general sleepiness, workload during shifts and the occurrence of health behaviours. Additionally, we measured attention, executive function and subjective alertness. Paramedics showed lower average sleep duration and quality, and fewer health behaviours than firefighters and the control group. However, no differences were found in performance on cognitive tests between the groups and between the measures. The results indicate that the differences in job specificity may contribute to the effects of shift work on the sleep and health of the workers.


Assuntos
Bombeiros , Jornada de Trabalho em Turnos , Atenção , Ritmo Circadiano , Humanos , Sono , Sonolência , Vigília , Tolerância ao Trabalho Programado
18.
Adv Sci (Weinh) ; 8(7): 2002944, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33854883

RESUMO

Neurological disorders are becoming a growing burden as society ages, and there is a compelling need to address this spiraling problem. Stem cell-based regenerative medicine is becoming an increasingly attractive approach to designing therapies for such disorders. The unique characteristics of mesenchymal stem cells (MSCs) make them among the most sought after cell sources. Researchers have extensively studied the modulatory properties of MSCs and their engineering, labeling, and delivery methods to the brain. The first part of this review provides an overview of studies on the application of MSCs to various neurological diseases, including stroke, traumatic brain injury, spinal cord injury, multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer's disease, Huntington's disease, Parkinson's disease, and other less frequently studied clinical entities. In the second part, stem cell delivery to the brain is focused. This fundamental but still understudied problem needs to be overcome to apply stem cells to brain diseases successfully. Here the value of cell engineering is also emphasized to facilitate MSC diapedesis, migration, and homing to brain areas affected by the disease to implement precision medicine paradigms into stem cell-based therapies.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Doenças do Sistema Nervoso/terapia , Humanos
19.
Int J Occup Saf Ergon ; 27(3): 686-697, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32436781

RESUMO

Introduction. Working shifts has a negative impact on employee health and cognitive efficiency. The purpose of this study was to investigate the impact of shift work on cognitive functions - attention and working memory - using both behavioural and electrophysiological measures. Methods. The study was carried out on a group of 34 shift employees (18 paramedics, 16 firefighters) and on 17 day workers. Participants performed the attention network test and the N-back task with two conditions (1-back, 2-back) while the electroencephalography signal was recorded. Results. Observations included a higher amplitude of the P200 potential in paramedics (compared to the control group), a higher amplitude of the P300 potential after work than on a day off and the lowest increase in power in the θ band after the night shift. In firefighters, lower α desynchronization and lower synchronization in the α/ß band were observed after a 24-h shift. Paramedics and firefighters had longer reaction times (N-back task). Conclusions. The results suggest that paramedics experience problems with sustained attention. Paramedics process visual stimuli in a different way; after a night shift, performing the tasks required more engagement of cognitive resources. For firefighters, a decrease in visual attention functions and cognitive inhibition was observed.


Assuntos
Bombeiros , Pessoal Técnico de Saúde , Cognição , Eletroencefalografia , Humanos , Memória de Curto Prazo
20.
Biochim Biophys Acta Rev Cancer ; 1876(1): 188582, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34144129

RESUMO

Mesenchymal stem cells (MSCs) are among the most investigated and applied somatic stem cells in experimental therapies for the regeneration of damaged tissues. Moreover, as it was recently postulated, MSCs may demonstrate anti-tumor properties. Glioblastoma (GBM) is a grade IV central nervous system tumor with no available effective therapy and an inevitably fatal prognosis. Experimental studies utilizing MSCs in GBM treatment resulted in numerous controversies. Native MSCs were shown to exert anti-GBM activity by controlling angiogenesis, regulating cell cycle, and inducing apoptosis. They also were used as sensitizing factors and vehicles delivering various anti-cancer compounds. On the other hand, some experiments revealed significant risks related to MSC-based therapies for GBM, such as enhancement of tumor cell proliferation, invasion, and aggressiveness. The following review elaborates on all mentioned contradictory data and provides a realistic, current clinical perspective on MSCs' potential in GBM treatment.


Assuntos
Neoplasias Encefálicas/patologia , Comunicação Celular , Glioblastoma/patologia , Células-Tronco Mesenquimais/patologia , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/terapia , Movimento Celular , Proliferação de Células , Glioblastoma/metabolismo , Glioblastoma/terapia , Humanos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Invasividade Neoplásica , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA