Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1850(9): 1905-11, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25964069

RESUMO

BACKGROUND: Measuring intracellular pH (pHi) in tumors is essential for the monitoring of cancer progression and the response of cancer cells to various treatments. The purpose of the study was to develop a method for pHi mapping in living cancer cells in vitro and in tumors in vivo, using the novel genetically encoded indicator, SypHer2. METHODS: A HeLa Kyoto cell line stably expressing SypHer2 in the cytoplasm was used, to perform ratiometric (dual excitation) imaging of the probe in cell culture, in 3D tumor spheroids and in tumor xenografts in living mice. RESULTS: Using SypHer2, pHi was demonstrated to be 7.34±0.11 in monolayer HeLa cells in vitro under standard cultivation conditions. An increasing pHi gradient from the center to the periphery of the spheroids was displayed. We obtained fluorescence ratio maps for HeLa tumors in vivo and ex vivo. Comparison of the map with the pathomorphology and with hypoxia staining of the tumors revealed a correspondence of the zones with higher pHi to the necrotic and hypoxic areas. CONCLUSIONS: Our results demonstrate that pHi imaging with the genetically encoded pHi indicator, SypHer2, can be a valuable tool for evaluating tumor progression in xenograft models. GENERAL SIGNIFICANCE: We have demonstrated, for the first time, the possibility of using the genetically encoded sensor SypHer2 for ratiometric pH imaging in cancer cells in vitro and in tumors in vivo. SypHer2 shows great promise as an instrument for pHi monitoring able to provide high accuracy and spatiotemporal resolution.


Assuntos
Técnicas Biossensoriais , Concentração de Íons de Hidrogênio , Neoplasias/metabolismo , Animais , Hipóxia Celular , Engenharia Genética , Células HeLa , Humanos , Camundongos , Neoplasias/patologia , Esferoides Celulares
2.
Cytokine ; 84: 10-6, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27203665

RESUMO

OX40 receptor-expressing regulatory T cells (Tregs) populate tumors and suppress a variety of immune cells, posing a major obstacle for cancer immunotherapy. Different ways to functionally inactivate Tregs by triggering OX40 receptor have been suggested, including anti-OX40 antibodies and Fc:OX40L fusion proteins. To investigate whether the soluble extracellular domain of OX40L (OX40Lexo) is sufficient to enhance antitumor immune response, we generated an OX40Lexo-expressing CT26 colon carcinoma cell line and studied its tumorigenicity in immunocompetent BALB/c and T cell deficient nu/nu mice. We found that soluble OX40L expressed in CT26 colon carcinoma favors the induction of an antitumor response which is not limited just to cells co-expressing EGFP as an antigenic determinant, but also eliminates CT26 cells expressing another fluorescent protein, KillerRed. Tumor rejection required the presence of T lymphocytes, as indicated by the unhampered tumor growth in nu/nu mice. Subsequent re-challenge of tumor-free BALB/c mice with CT26 EGFP cells resulted in no tumor growth, which is indicative of the formation of immunological memory. Adoptive transfer of splenocytes from mice that successfully rejected CT26 OX40Lexo EGFP tumors to naïve mice conferred 100% resistance to subsequent challenge with the CT26 EGFP tumor.


Assuntos
Carcinoma/metabolismo , Neoplasias do Colo/metabolismo , Ligante OX40/metabolismo , Transferência Adotiva/métodos , Animais , Carcinoma/imunologia , Carcinoma/terapia , Linhagem Celular , Neoplasias do Colo/imunologia , Neoplasias do Colo/terapia , Feminino , Proteínas de Fluorescência Verde/imunologia , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Memória Imunológica/imunologia , Memória Imunológica/fisiologia , Imunoterapia/métodos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Ligante OX40/imunologia , Receptores OX40/imunologia , Receptores OX40/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
3.
Biochim Biophys Acta ; 1830(11): 5059-67, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23876295

RESUMO

BACKGROUND: Genetically encoded photosensitizers are a promising optogenetic instrument for light-induced production of reactive oxygen species in desired locations within cells in vitro or whole body in vivo. Only two such photosensitizers are currently known, GFP-like protein KillerRed and FMN-binding protein miniSOG. In this work we studied phototoxic effects of miniSOG in cancer cells. METHODS: HeLa Kyoto cell lines stably expressing miniSOG in different localizations, namely, plasma membrane, mitochondria or chromatin (fused with histone H2B) were created. Phototoxicity of miniSOG was tested on the cells in vitro and tumor xenografts in vivo. RESULTS: Blue light induced pronounced cell death in all three cell lines in a dose-dependent manner. Caspase 3 activation was characteristic of illuminated cells with mitochondria- and chromatin-localized miniSOG, but not with miniSOG in the plasma membrane. In addition, H2B-miniSOG-expressing cells demonstrated light-induced activation of DNA repair machinery, which indicates massive damage of genomic DNA. In contrast to these in vitro data, no detectable phototoxicity was observed on tumor xenografts with HeLa Kyoto cell lines expressing mitochondria- or chromatin-localized miniSOG. CONCLUSIONS: miniSOG is an excellent genetically encoded photosensitizer for mammalian cells in vitro, but it is inferior to KillerRed in the HeLa tumor. GENERAL SIGNIFICANCE: This is the first study to assess phototoxicity of miniSOG in cancer cells. The results suggest an effective ontogenetic tool and may be of interest for molecular and cell biology and biomedical applications.


Assuntos
Flavoproteínas/genética , Terapia Genética/métodos , Oxigênio/metabolismo , Fármacos Fotossensibilizantes/metabolismo , Animais , Caspase 3/genética , Caspase 3/metabolismo , Morte Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/genética , Membrana Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Dano ao DNA , Reparo do DNA , Dermatite Fototóxica/etiologia , Dermatite Fototóxica/genética , Dermatite Fototóxica/metabolismo , Feminino , Flavoproteínas/metabolismo , Células HEK293 , Células HeLa , Humanos , Luz/efeitos adversos , Camundongos , Camundongos Nus , Mitocôndrias/genética , Mitocôndrias/metabolismo , Riboflavina/genética , Riboflavina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Chemistry ; 20(41): 13234-41, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25171432

RESUMO

A novel class of fluorescent dyes based on conformationally locked GFP chromophore is reported. These dyes are characterized by red-shifted spectra, high fluorescence quantum yields and pH-independence in physiological pH range. The intra- and intermolecular mechanisms of radiationless deactivation of ABDI-BF2 fluorophore by selective structural locking of various conformational degrees of freedom were studied. A unique combination of solvatochromic and lipophilic properties together with "infinite" photostability (due to a dynamic exchange between free and bound dye) makes some of the novel dyes promising bioinspired tools for labeling cellular membranes, lipid drops and other organelles.


Assuntos
Corantes Fluorescentes/química , Proteínas de Fluorescência Verde/metabolismo , Aminação , Corantes Fluorescentes/metabolismo , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Microscopia Confocal , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Solventes/química , Espectrometria de Fluorescência
5.
PLoS One ; 17(8): e0273340, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36001576

RESUMO

OBJECTIVE: The aim of the study was to assess inflammatory markers and clinical outcomes in adult patients admitted to hospital with mild-to-moderate COVID-19 and treated with a combination of standard-of-care (SOC) and targeted immunosuppressive therapy including anti-IL-17A (netakimab), anti-IL-6R (tocilizumab), or JAK1/JAK2 inhibitor (baricitinib) or with a standard-of-care therapy alone. METHODS: The observational cohort study included 154 adults hospitalized between February and August, 2020 with RT-PCR-confirmed SARS-CoV-2 with National Early Warning Score2 (NEWS2) < 7 and C-reactive protein (CRP) levels ≤ 140 mg/L on the day of the start of the therapy or observation. Patients were divided into the following groups: I) 4 mg baricitinib, 1 or 2 times a day for an average of 5 days (n = 38); II) 120 mg netakimab, one dose (n = 48); III) 400 mg tocilizumab, one dose (n = 34), IV) SOC only: hydroxychloroquine, antiviral, antibacterial, anticoagulant, and dexamethasone (n = 34). RESULTS: CRP levels significantly decreased after 72 h in the tocilizumab (p = 1 x 10-5) and netakimab (p = 8 x 10-4) groups and remained low after 120 h. The effect was stronger with tocilizumab compared to other groups (p = 0.028). A significant decrease in lactate dehydrogenase (LDH) levels was observed 72 h after netakimab therapy (p = 0.029). NEWS2 scores significantly improved 72 h after tocilizumab (p = 6.8 x 10-5) and netakimab (p = 0.01) therapy, and 120 h after the start of tocilizumab (p = 8.6 x 10-5), netakimab (p = 0.001), or baricitinib (p = 4.6 x 10-4) therapy, but not in the SOC group. Blood neutrophil counts (p = 6.4 x 10-4) and neutrophil-to-lymphocyte ratios (p = 0.006) significantly increased 72 h after netakimab therapy and remained high after 120 h. The percentage of patients discharged 5-7 days after the start of therapy was higher in the tocilizumab (44.1%) and netakimab (41.7%) groups than in the baricitinib (31.6%) and SOC (23.5%) groups. Compared to SOC (3 of the 34; 8.8%), mortality was lower in netakimab (0 of the 48; 0%, RR = 0.1 (95% CI: 0.0054 to 1.91)), tocilizumab (0 of the 34; 0%, RR = 0.14 (95% CI: 0.0077 to 2.67)), and baricitinib (1 of the 38; 2.6%, RR = 0.3 (95% CI: 0.033 to 2.73)) groups. CONCLUSION: In hospitalized patients with mild-to-moderate COVID-19, the combination of SOC with anti-IL-17A or anti-IL-6R therapy were superior or comparable to the combination with JAK1/JAK2 inhibitor, and all three were superior to SOC alone. Whereas previous studies did not demonstrate significant benefit of anti-IL-17A therapy for severe COVID-19, our data suggest that such therapy could be a rational choice for mild-to-moderate disease, considering the generally high safety profile of IL-17A blockers. The significant increase in blood neutrophil count in the netakimab group may reflect efflux of neutrophils from inflamed tissues. We therefore hypothesize that neutrophil count and neutrophil-to-lymphocyte ratio could serve as markers of therapeutic efficiency for IL-17A-blocking antibodies in the context of active inflammation.


Assuntos
Tratamento Farmacológico da COVID-19 , Adulto , Anti-Inflamatórios/uso terapêutico , Anticorpos Monoclonais , Anticorpos Monoclonais Humanizados , Azetidinas , Humanos , Purinas , Pirazóis , SARS-CoV-2 , Sulfonamidas , Resultado do Tratamento
6.
Front Immunol ; 12: 697307, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489944

RESUMO

The interplay between T- and B-cell compartments during naïve, effector and memory T cell maturation is critical for a balanced immune response. Primary B-cell immunodeficiency arising from X-linked agammaglobulinemia (XLA) offers a model to explore B cell impact on T cell subsets, starting from the thymic selection. Here we investigated characteristics of naïve and effector T cell subsets in XLA patients, revealing prominent alterations in the corresponding T-cell receptor (TCR) repertoires. We observed immunosenescence in terms of decreased diversity of naïve CD4+ and CD8+ TCR repertoires in XLA donors. The most substantial alterations were found within naïve CD4+ subsets, and we have investigated these in greater detail. In particular, increased clonality and convergence, along with shorter CDR3 regions, suggested narrower focused antigen-specific maturation of thymus-derived naïve Treg (CD4+CD45RA+CD27+CD25+) in the absence of B cells - normally presenting diverse self and commensal antigens. The naïve Treg proportion among naïve CD4 T cells was decreased in XLA patients, supporting the concept of impaired thymic naïve Treg selection. Furthermore, the naïve Treg subset showed prominent differences at the transcriptome level, including increased expression of genes specific for antigen-presenting and myeloid cells. Altogether, our findings suggest active B cell involvement in CD4 T cell subsets maturation, including B cell-dependent expansion of the naïve Treg TCR repertoire that enables better control of self-reactive T cells.


Assuntos
Agamaglobulinemia/imunologia , Doenças Genéticas Ligadas ao Cromossomo X/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Adolescente , Adulto , Agamaglobulinemia/genética , Idoso , Idoso de 80 Anos ou mais , Linfócitos B/imunologia , Estudos de Casos e Controles , Regiões Determinantes de Complementaridade/genética , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T , Doenças Genéticas Ligadas ao Cromossomo X/genética , Humanos , Imunossenescência/genética , Imunossenescência/imunologia , Masculino , Células T de Memória/imunologia , Pessoa de Meia-Idade , Modelos Imunológicos , Transcriptoma , Adulto Jovem
7.
Mol Biotechnol ; 41(3): 247-53, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19127453

RESUMO

A novel DSN-depletion method allows elimination of selected sequences from full-length-enriched cDNA libraries. Depleted cDNA can be applied for subsequent EST sequencing, expression cloning, and functional screening approaches. The method employs specific features of the kamchatka crab duplex-specific nuclease (DSN). This thermostable enzyme is specific for double-stranded (ds) DNA, and is thus used for selective degradation of ds DNA in complex nucleic acids. DSN depletion is performed prior to library cloning, and includes the following steps: target cDNA is mixed with excess driver DNA (representing fragments of the genes to be eliminated), denatured, and allowed to hybridize. During hybridization, driver molecules form hybrids with the target sequences, leading to their removal from the ss DNA fraction. Next, the ds DNA fraction is hydrolyzed by DSN, and the ss fraction is amplified using long-distance PCR. DSN depletion has been tested in model experiments.


Assuntos
Anomuros/enzimologia , DNA Complementar/metabolismo , Desoxirribonucleases/metabolismo , Biblioteca Gênica , Animais , Anomuros/genética , Anomuros/metabolismo , Antozoários/enzimologia , Antozoários/genética , DNA Complementar/genética , Desoxirribonucleases/genética , Feminino , Humanos , Hibridização de Ácido Nucleico , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Placenta/enzimologia , Placenta/metabolismo , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único
8.
Biotechnol Lett ; 31(2): 251-7, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18810329

RESUMO

Using random mutagenesis of the gene encoding duplex-specific nuclease from the king crab we found a new mutant that retained all properties of the wild-type protein, but exhibited a much lower thermal stability. This enzyme, denoted thermolabile duplex-specific nuclease (DSN-TL), exhibits high processivity and selective cleavage of dsDNA. The inactivation temperature for DSN-TL is 15-20 degrees C lower than that of the widely used DNase I and shrimp nuclease, and its catalytic activity is more than 10 times higher. Moreover, DSN-TL is resistant to proteinase K treatment. These properties make DSN-TL very useful for removing genomic DNA from RNA samples intended for quantitative RT-PCR.


Assuntos
Braquiúros/enzimologia , DNA/química , DNA/genética , Desoxirribonucleases/química , Desoxirribonucleases/genética , Animais , Sítios de Ligação , Braquiúros/genética , Catálise , Ativação Enzimática , Estabilidade Enzimática , Mutagênese Sítio-Dirigida , Ligação Proteica , Engenharia de Proteínas/métodos , Relação Estrutura-Atividade , Temperatura
9.
Gene ; 418(1-2): 41-8, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18514436

RESUMO

Kamchatka crab duplex-specific nuclease (Par_DSN) has been classified as a member of the family of DNA/RNA non-specific beta-beta-alpha metal finger (bba-Me-finger) nucleases, the archetype of which is the nuclease from Serratia marcescens. Although the enzyme under investigation seems to belong to the family of S. marcescens nucleases, Par_DSN exhibits a marked preference for double-stranded DNA as a substrate and this property is unusual for other members of this family. We have searched other Arthropod species and identified a number of novel Par_DSN homologs. A phylogenetic analysis demonstrates that the Par_DSN-like enzymes constitute a separate branch in the evolutionary tree of bba-Me-finger nucleases. Combining sequence analysis and site-directed mutagenesis, we found that Par_DSN and its homologs possess the nuclease domain that is slightly longer than that of classic Serratia relatives. The active site composition of Par_DSN is similar but not identical to that of classic Serratia nucleases. Based on these findings, we proposed a new classification of Par_DSN-like nucleases.


Assuntos
Braquiúros/enzimologia , Desoxirribonucleases/química , Desoxirribonucleases/classificação , Serratia/enzimologia , Animais , Sítios de Ligação , Estrutura Molecular , Mutagênese Sítio-Dirigida , Filogenia , Estrutura Terciária de Proteína
10.
J Bioinform Comput Biol ; 6(4): 759-73, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18763741

RESUMO

Expressed sequence tags (ESTs) represent 500-1000-bp-long sequences corresponding to mRNAs derived from different sources (cell lines, tissues, etc.). The human EST database contains over 8,000,000 sequences, with over 4,000,000,000 total nucleotides. RNA molecules are transcribed from a genomic DNA template; therefore, all ESTs should match corresponding genomes. Nevertheless, we have found in the human EST database approximately 11,000 ESTs not matching sequences in the human genome database. The presence of "trash" ESTs (TESTs) in the EST database could result from DNA or RNA contamination of the laboratory equipment, tissues, or cell lines. TESTs could also represent sequences from unidentified human genes or from species inhabiting the human body. Here, we attempt to identify the sources of human EST database contaminations. In particular, we discuss systematic contamination of the mammalian EST databases with sequences of plants.


Assuntos
Mapeamento Cromossômico/métodos , DNA Complementar/genética , Componentes Genômicos/genética , Genoma Humano/genética , Alinhamento de Sequência/métodos , Sequência de Bases , Bases de Dados Genéticas , Etiquetas de Sequências Expressas , Humanos , Dados de Sequência Molecular
11.
BMC Biochem ; 9: 14, 2008 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-18495036

RESUMO

BACKGROUND: Nucleases, which are key components of biologically diverse processes such as DNA replication, repair and recombination, antiviral defense, apoptosis and digestion, have revolutionized the field of molecular biology. Indeed many standard molecular strategies, including molecular cloning, studies of DNA-protein interactions, and analysis of nucleic acid structures, would be virtually impossible without these versatile enzymes. The discovery of nucleases with unique properties has often served as the basis for the development of modern molecular biology methods. Thus, the search for novel nucleases with potentially exploitable functions remains an important scientific undertaking. RESULTS: Using degenerative primers and the rapid amplification of cDNA ends (RACE) procedure, we cloned the Duplex-Specific Nuclease (DSN) gene from the hepatopancreas of the Kamchatka crab and determined its full primary structure. We also developed an effective method for purifying functional DSN from the crab hepatopancreas. The isolated enzyme was highly thermostable, exhibited a broad pH optimum (5.5 - 7.5) and required divalent cations for activity, with manganese and cobalt being especially effective. The enzyme was highly specific, cleaving double-stranded DNA or DNA in DNA-RNA hybrids, but not single-stranded DNA or single- or double-stranded RNA. Moreover, only DNA duplexes containing at least 9 base pairs were effectively cleaved by DSN; shorter DNA duplexes were left intact. CONCLUSION: We describe a new DSN from Kamchatka crab hepatopancreas, determining its primary structure and developing a preparative method for its purification. We found that DSN had unique substrate specificity, cleaving only DNA duplexes longer than 8 base pairs, or DNA in DNA-RNA hybrids. Interestingly, the DSN primary structure is homologous to well-known Serratia-like non-specific nucleases structures, but the properties of DSN are distinct. The unique substrate specificity of DSN should prove valuable in certain molecular biology applications.


Assuntos
Braquiúros/enzimologia , Clonagem Molecular/métodos , Endonucleases/isolamento & purificação , Hepatopâncreas/enzimologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Braquiúros/genética , Endonucleases/química , Endonucleases/genética , Dados de Sequência Molecular
12.
Mol Biosyst ; 4(3): 205-12, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18437263

RESUMO

Analysis of rare messages in cDNA libraries is extremely difficult due to the substantial variations in the abundance of different transcripts in cells and tissues. Therefore, for rare transcript searches and analyses, the generation of equalized (normalized) cDNA is essential. Several cDNA normalization methods have been developed since 1990. A number of these methods have been optimized for the normalization of full-length enriched cDNA, and used in various applications, including transcriptome analysis and functional screening of cDNA libraries. One such procedure (named DSN-normalization) is based on the unique properties of duplex-specific nuclease (DSN) from kamchatka crab and allows the generation of normalized cDNA libraries with a high gene discovery rate.


Assuntos
DNA Complementar/análise , DNA Complementar/genética , Biblioteca Gênica , Animais , DNA Complementar/metabolismo , Desoxirribonucleases/metabolismo
13.
Chem Commun (Camb) ; 53(5): 949-951, 2017 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-28044165

RESUMO

Single-molecule localization microscopy relies on either controllable photoswitching of fluorescent probes or their robust blinking. We have found that blinking of monomeric red fluorescent proteins TagRFP, TagRFP-T, and FusionRed occurs at moderate illumination power and matches well with camera acquisition speed. It allows for super-resolution image reconstruction of densely labelled structures in live cells using various algorithms.


Assuntos
Proteínas Luminescentes/química , Algoritmos , Células HeLa , Humanos , Microscopia de Fluorescência , Proteína Vermelha Fluorescente
14.
Chem Sci ; 8(10): 7138-7142, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29147545

RESUMO

We present protein-PAINT - the implementation of the general principles of PAINT (Point Accumulation for Imaging in Nanoscale Topography) for live-cell protein labeling. Our method employs the specific binding of cell-permeable fluorogenic dyes to genetically encoded protein tags. We engineered three mutants of the bacterial lipocalin Blc that possess different affinities to a fluorogenic dye and exhibit a strong increase in fluorescence intensity upon binding. This allows for rapid labeling and washout of intracellular targets on a time scale from seconds to a few minutes. We demonstrate an order of magnitude higher photostability of the fluorescence signal in comparison with spectrally similar fluorescent proteins. Protein-PAINT ensures prolonged super-resolution fluorescence microscopy of living cells in both single molecule detection and stimulated emission depletion regimes.

15.
Nucleic Acids Res ; 32(3): e37, 2004 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-14973331

RESUMO

We developed a novel simple cDNA normalization method [termed duplex-specific nuclease (DSN) normalization] that may be effectively used for samples enriched with full-length cDNA sequences. DSN normalization involves the denaturation-reassociation of cDNA, degradation of the double-stranded (ds) fraction formed by abundant transcripts and PCR amplification of the equalized single-stranded (ss) DNA fraction. The key element of this method is the degradation of the ds fraction formed during reassociation of cDNA using the kamchatka crab DSN, as described recently. This thermostable enzyme displays a strong preference for cleaving ds DNA and DNA in DNA-RNA hybrid duplexes compared with ss DNA and RNA, irrespective of sequence length. We developed normalization protocols for both first-strand cDNA [when poly(A)+ RNA is available] and amplified cDNA (when only total RNA can be obtained). Both protocols were evaluated in model experiments using human skeletal muscle cDNA. We also employed DSN normalization to normalize cDNA from nervous tissues of the marine mollusc Aplysia californica (a popular model organism in neuroscience) to illustrate further the efficiency of the normalization technique.


Assuntos
Braquiúros/enzimologia , DNA Complementar/metabolismo , Desoxirribonucleases/metabolismo , Animais , Aplysia/genética , Sistema Nervoso Central/metabolismo , DNA Complementar/genética , Biblioteca Gênica , Humanos , Biologia Molecular/métodos , Dados de Sequência Molecular , Músculo Esquelético/metabolismo
16.
Biotechniques ; 61(2): 92-4, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27528074

RESUMO

Genetically encoded photosensitizers represent a promising optogenetic tool for the induction of light-controlled oxidative stress strictly localized to a selected intracellular compartment. Here we tested the phototoxic effects of the flavin-containing phototoxic protein miniSOG targeted to the cytoplasmic surfaces of late endosomes and lysosomes by fusion with Rab7. In HeLa Kyoto cells stably expressing miniSOG-Rab7, we demonstrated a high level of cell death upon blue-light illumination. Pepstatin A completely abolished phototoxicity of miniSOG-Rab7, showing a key role for cathepsin D in this model. Using a far-red fluorescence sensor for caspase-3, we observed caspase-3 activation during miniSOG-Rab7-mediated cell death. We conclude that upon illumination, miniSOG-Rab7 induces lysosomal membrane permeabilization (LMP) and leakage of cathepsins into the cytosol, resulting in caspase-dependent apoptosis.


Assuntos
Morte Celular , Lisossomos , Microscopia de Fluorescência/métodos , Optogenética/métodos , Fármacos Fotossensibilizantes/metabolismo , Oxigênio Singlete/farmacologia , Caspase 3/análise , Caspase 3/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/efeitos da radiação , Células HeLa , Humanos , Luz , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Lisossomos/genética , Lisossomos/metabolismo , Fármacos Fotossensibilizantes/química , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Oxigênio Singlete/metabolismo , Proteínas rab de Ligação ao GTP/química , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
17.
J Biomed Opt ; 20(8): 88002, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26277828

RESUMO

The development of tumor therapies based on the activation of antitumor immunity requires tumor models that are highly immunogenic. The immunologic response to fluorescent proteins, green fluorescent protein (GFP), or enhanced GFP (EGFP) was demonstrated in different cancer models. However, for live animal imaging, red and far-red fluorescent proteins are preferable, but their immunogenicity has not been studied. We assessed the immunogenicity of the red fluorescent protein, KillerRed (KR), in CT26 murine colon carcinoma. We showed a slower growth and a lower tumor incidence of KR-expressing tumors in comparison with nonexpressing ones. We found that KR-expressing lung metastases and rechallenged tumors were not formed in mice that had been surgically cured of KR-expressing primary tumors. The effect of low-dose cyclophosphamide (CY) treatment was also tested, as this is known to activate antitumor immune responses. The low-dose CY therapy of CT26-KR tumors resulted in inhibition of tumor growth and improved mouse survival. In summary, we have established a highly immunogenic tumor model that could be valuable for investigations of the mechanisms of antitumor immunity and the development of new therapeutic approaches.


Assuntos
Proteínas de Fluorescência Verde/imunologia , Proteínas de Fluorescência Verde/farmacologia , Imunidade Inata/imunologia , Modelos Imunológicos , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia , Animais , Linhagem Celular Tumoral , Proteínas de Fluorescência Verde/genética , Imunidade Inata/efeitos dos fármacos , Camundongos
18.
J Biophotonics ; 8(11-12): 952-60, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25648724

RESUMO

The purpose of this study was to evaluate photobleaching of the genetically encoded photosensitizer KillerRed in tumor spheroids upon pulsed and continuous wave (CW) laser irradiation and to analyze the mechanisms of cancer cell death after the treatment. We observed the light-dose dependent mechanism of KillerRed photobleaching over a wide range of fluence rates. Loss of fluorescence was limited to 80% at light doses of 150 J/cm(2) and more. Based on the bleaching curves, six PDT regimes were applied for irradiation using CW and pulsed regimes at a power density of 160 mW/cm(2) and light doses of 140 J/cm(2) , 170 J/cm(2) and 200 J/cm(2). Irradiation of KillerRed-expressing spheroids in the pulsed mode (pulse duration 15 ns, pulse repetition rate 10 Hz) induced predominantly apoptotic cell death, while in the case of CW mode the cancer cells underwent necrosis. In general, these results improve our understanding of photobleaching mechanisms in GFP-like proteins and show the importance of appropriate selection of treatment mode for PDT with KillerRed. Representative fluorescence image of two KillerRed-expressing spheroids before and immediately after CW irradiation.


Assuntos
Terapia Genética/métodos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Fotodegradação , Fotoquimioterapia/métodos , Fototerapia/métodos , Neoplasias do Colo do Útero/terapia , Apoptose/fisiologia , Apoptose/efeitos da radiação , Técnicas de Cultura de Células , Sobrevivência Celular/fisiologia , Sobrevivência Celular/efeitos da radiação , Feminino , Células HeLa , Humanos , Lasers , Necrose , Imagem Óptica , Fototerapia/instrumentação , Alicerces Teciduais
19.
Sci Rep ; 5: 7729, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25578556

RESUMO

Nonsense-mediated mRNA decay (NMD) is a ubiquitous mechanism of degradation of transcripts with a premature termination codon. NMD eliminates aberrant mRNA species derived from sources of genetic variation such as gene mutations, alternative splicing and DNA rearrangements in immune cells. In addition, recent data suggest that NMD is an important mechanism of global gene expression regulation. Here, we describe new reporters to quantify NMD activity at the single cell level using fluorescent proteins of two colors: green TagGFP2 and far-red Katushka. TagGFP2 was encoded by mRNA targeted to either the splicing-dependent or the long 3'UTR-dependent NMD pathway. Katushka was used as an expression level control. Comparison of the fluorescence intensities of cells expressing these reporters and cells expressing TagGFP2 and Katushka from corresponding control NMD-independent vectors allowed for the assessment of NMD activity at the single cell level using fluorescence microscopy and flow cytometry. The proposed reporter system was successfully tested in several mammalian cell lines and in transgenic Xenopus embryos.


Assuntos
Degradação do RNAm Mediada por Códon sem Sentido/genética , Análise de Célula Única/métodos , Regiões 3' não Traduzidas/genética , Animais , Embrião não Mamífero/metabolismo , Citometria de Fluxo , Genes Reporter , Vetores Genéticos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Células HeLa , Humanos , Camundongos , Microscopia de Fluorescência , Splicing de RNA/genética , Xenopus laevis
20.
BMC Genomics ; 3: 15, 2002 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-12065025

RESUMO

BACKGROUND: Freshwater planarians are widely used as models for investigation of pattern formation and studies on genetic variation in populations. Despite extensive information on the biology and genetics of planaria, the occurrence and distribution of viruses in these animals remains an unexplored area of research. RESULTS: Using a combination of Suppression Subtractive Hybridization (SSH) and Mirror Orientation Selection (MOS), we compared the genomes of two strains of freshwater planarian, Girardia tigrina. The novel extrachromosomal DNA-containing virus-like element denoted PEVE (Planarian Extrachromosomal Virus-like Element) was identified in one planarian strain. The PEVE genome (about 7.5 kb) consists of two unique regions (Ul and Us) flanked by inverted repeats. Sequence analyses reveal that PEVE comprises two helicase-like sequences in the genome, of which the first is a homolog of a circoviral replication initiator protein (Rep), and the second is similar to the papillomavirus E1 helicase domain. PEVE genome exists in at least two variant forms with different arrangements of single-stranded and double-stranded DNA stretches that correspond to the Us and Ul regions. Using PCR analysis and whole-mount in situ hybridization, we characterized PEVE distribution and expression in the planarian body. CONCLUSIONS: PEVE is the first viral element identified in free-living flatworms. This element differs from all known viruses and viral elements, and comprises two potential helicases that are homologous to proteins from distant viral phyla. PEVE is unevenly distributed in the worm body, and is detected in specific parenchyma cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA