RESUMO
Factors contributing to variations in the quality and microbiota of ensiled forages and in bulk tank microbiota in milk from cows fed different forages were investigated. Nutritional quality, fermentation parameters and hygiene quality of forage samples and corresponding bulk tank milk samples collected in 3 periods from 18 commercial farms located in northern Sweden were compared. Principal coordinates analysis revealed that the microbiota in forage and bulk milk, analyzed using 16S rRNA gene-based amplicon sequencing, were significantly different. The genera Lactobacillus, Weissella and Leuconostoc dominated in forage samples, whereas Pseudomonas, Staphylococcus and Streptococcus dominated in bulk milk samples. Forage quality and forage-associated microbiota were affected by ensiling method and by use of silage additive. Forages stored in bunker and tower silos (confounded with use of additive) were associated with higher levels of acetic and lactic acid and Lactobacillus. Forage ensiled as bales (confounded with no use of additive) was associated with higher dry matter content, water-soluble carbohydrate content, pH, yeast count and the genera Weissella, Leuconostoc and Enterococcus. For bulk tank milk samples, milking system was identified as the major factor affecting the microbiota and type of forage preservation had little impact. Analysis of common amplicon sequence variants (ASVs) suggested that forage was not the major source of Lactobacillus found in bulk tank milk.
RESUMO
AIMS: To investigate the epiphytic microbiota in grass-clover herbage harvested at different sites and occasions and to explore the effect of different silage additives on the resulting silage microbiota. METHODS AND RESULTS: Herbage was harvested from grass-clover leys at geographically distributed sites in a long-term field experiment in Sweden, in early and late season of two consecutive years. Different silages were made from the herbage using: (1) no additive, (2) acid-treatment, and (3) inoculation by starter culture. Herbages were analysed for botanical and chemical composition, and the resulting silages for products of fermentation. Bacterial DNA was extracted from herbage and silage samples, followed by sequencing using Illumina 16S rRNA amplicon sequencing. Herbage microbiota showed no clear correlation to site or harvesting time. Silage additives had a major effect on the ensiling process; inoculation resulted in well fermented silages comprising a homogenous microbiota dominated by the genera Lactobacillus and Pediococcus. A minor effect of harvest time was also observed, with generally a more diverse microbiota in second-harvest silages. Untreated silages showed a higher relative abundance (RA) from non-lactic acid bacteria compared to acid-treated silages. In most silages, only a few bacterial amplicon sequence variants contributed to most of the RA. CONCLUSIONS: The epiphytic microbiota in grass-clover herbage were found to be random and not dependent on site. From a microbial point of view, the most predictable and preferable silage outcome was obtained by inoculation with a starter culture. Acid-treatment with formic- and propionic acid surprisingly resulted in a less preferable silage. Silage making without additives cannot be recommended based on our results.
Assuntos
Microbiota , Silagem , Fermentação , RNA Ribossômico 16S/genética , Suécia , Medicago , PoaceaeRESUMO
Locally produced food is becoming popular among Swedish consumers. One product that has increased in popularity is artisan-manufactured goat cheese, and although the dairy goat industry in Sweden is small-scale, production is gradually increasing. In goats, the CSN1S1 gene regulates expression of the protein αS1-casein (αS1-CN), which has been found to be important for cheese yield. Over the years, breeding animals have been imported to Sweden from Norway. Historically, a high frequency of the Norwegian goat population carried a polymorphism at the CSN1S1 gene. This polymorphism, called the Norwegian null allele (D), leads to zero or significantly reduced expression of αS1-CN. Using milk samples from 75 goats, this study investigated associations between expression of αS1-CN and genotype at the CSN1S1 gene on milk quality traits from Swedish Landrace goats. Milk samples were grouped according to relative level of αS1-CN (low: 0-6.9% of total protein; medium-high: 7-25% of total protein) and genotype (DD, DG, DA/AG/AA). While the D allele leads to extremely low expression of αS1-CN, the G allele is low expressing and the A allele is highly expressing for this protein. Principal component analysis was used to explore the total variation in milk quality traits. To evaluate the effect of different allele groups on milk quality attributes, 1-way ANOVA and Tukey pairwise comparison tests were used. The majority (72%) of all goat milk samples investigated showed relative αS1-CN content of 0% to 6.82% of total protein. The frequency of individuals homozygous for the Norwegian null allele (DD) was 59% in the population of sampled goats, and only 15% carried at least one A allele. A low relative concentration of αS1-CN was associated with lower total protein, higher pH, and higher relative concentration of ß-casein and levels of free fatty acids. Milk from goats homozygous for the null allele (DD) showed a similar pattern as milk with low relative concentration of αS1-CN, but total protein was only numerically lower, and somatic cell count and αS2-CN were higher than for the other genotypes. The associations between levels of αS1-CN and the investigated genotype at the CSN1S1 gene indicate a need for a national breeding program for Swedish dairy goats.
Assuntos
Caseínas , Leite , Animais , Leite/química , Caseínas/análise , Suécia , Genótipo , Cabras/genética , Alérgenos/metabolismo , Proteínas do Leite/análiseRESUMO
In this study, we investigated the variation in the microbial community present in bulk tank milk samples and the potential effect of different farm management factors. Bulk tank milk samples were collected repeatedly over one year from 42 farms located in northern Sweden. Total and thermoresistant bacteria counts and 16S rRNA gene-based amplicon sequencing were used to characterize microbial community composition. The microbial community was in general heterogeneous both within and between different farms and the community composition in the bulk tank milk was commonly dominated by Pseudomonas, Acinetobacter, Streptococcus, unclassified Peptostreptococcaceae, and Staphylococcus. Principal component analysis including farm factor variables and microbial taxa data revealed that the microbial community in milk was affected by type of milking system. Milk from farms using an automatic (robot) milking system (AMS) and loose housing showed different microbial community composition compared with milk from tiestall farms. A discriminant analysis model revealed that this difference was dependent on several microbial taxa. Among farms using an automatic milking system, there were further differences in the microbial community composition depending on the brand of the milking robot used. On tiestall farms, routines for teat preparation and cleaning of the milking equipment affected the microbial community composition in milk. Total bacteria count (TBC) in milk differed between the farm types, and TBC were higher on AMS than tiestall farms (log 4.05 vs. log 3.79 TBC/mL for AMS and tiestalls, respectively). Among tiestall farms, milk from farms using a chemical agent in connection to teat preparation and a more frequent use of acid to clean the milking equipment had lower TBC in milk, than milk from farms using water for teat preparation and a less frequent use of acid to clean the milking equipment (log 3.68 vs. 4.02 TBC/mL). There were no significant differences in the number of thermoresistant bacteria between farm types. The evaluated factors explained only a small proportion of total variation in the microbiota data, however, despite this, the study highlights the effect of routines associated with teat preparation and cleaning of the milking equipment on raw milk microbiota, irrespective of type of milking system used.
Assuntos
Microbiota , Leite , Animais , Indústria de Laticínios , Glândulas Mamárias Animais , RNA Ribossômico 16S/genéticaRESUMO
Relationships between dairy farm practices, the composition and properties of raw milk, and the quality of the resulting cheese are complex. In this review, we assess the effect of farm factors on the quality of bovine raw milk intended for cheesemaking. The literature reports several prominent farm-related factors that are closely associated with milk quality characteristics. We describe their effects on the composition and technological properties of raw milk and on the quality of the resulting cheese. Cow breed, composite genotype, and protein polymorphism all have noticeable effects on milk coagulation, cheese yield, and cheese composition. Feed and feeding strategy, dietary supplementation, housing and milking system, and seasonality of milk production also influence the composition and properties of raw milk, and the resulting cheese. The microbiota in raw milk is influenced by on-farm factors and by the production environment, and may influence the technological properties of the milk and the sensory profile of certain cheese types. Advances in research dealing with the technological properties of raw milk have undoubtedly improved understanding of how on-farm factors affect milk quality attributes, and have refuted the concept of one milk for all purposes. The specific conditions for milk production should be considered when the milk is intended for the production of cheese with unique characteristics. The scientific identification of these conditions would improve the current understanding of the complex associations between raw milk quality and farm and management factors. Future research that considers dairy landscapes within broader perspectives and develops multidimensional approaches to control the quality of raw milk intended for long-ripening cheese production is recommended.
Assuntos
Queijo , Leite , Animais , Bovinos , Fazendas , Feminino , Humanos , EstudantesRESUMO
This study was part of a larger project that aimed to understand the causes for increasing variation in cheese ripening in a cheese-producing region in northern Sweden. The influence of different on-farm factors on raw milk composition and properties was investigated and is described in this paper, whereas the monthly variation in the milk quality traits during 1 yr is described in our companion paper. The dairy farming systems on a total of 42 dairy farms were characterized through a questionnaire and farm visits. Milk from farm tanks was sampled monthly over 1 yr and analyzed for quality attributes important for cheese making. On applying principal component analyses to evaluate the variation in on-farm factors, different types of farms were distinguished. Farms with loose housing and automatic milking system (AMS) or milking parlor had a higher number of lactating cows, and predominantly Swedish Holstein (SH) breed. Farms associated with tiestalls had a lower number of lactating cows and breeds other than SH. Applying principal component analyses to study the variation in composition and properties of tank milk samples from farms revealed a tendency for the formation of 2 clusters: milk from farms with AMS or a milking parlor, and milk from farms with tiestall milking. The interaction between the milking system, housing system, and breed probably contributed to this grouping. Other factors that were used in the characterization of the farming systems only showed a minor influence on raw milk quality. Despite the interaction, milk from tiestall farms with various cow breeds had higher concentrations (g/100 g of milk) of fat (4.74) and protein (3.63), and lower lactose concentrations (4.67) than milk from farms with predominantly SH cows and AMS (4.32, 3.47, and 4.74 g/100 g of milk, respectively) or a milking parlor (4.47, 3.54, and 4.79 g/100 g of milk, respectively). Higher somatic cell count (195 × 103/mL) and lower free fatty acid concentration (0.75 mmol/100 g of fat) were observed in milk from farms with AMS than in milk from tiestall systems (150 × 103/mL and 0.83 mmol/100 g of fat, respectively). Type of farm influenced milk gel strength, with milk from farms with predominantly SH cows showing the lowest gel strength (65.0 Pa), but not a longer rennet coagulation time. Effects of dairy farming system (e.g., dominant breed, milking system, housing, and herd size) on milk quality attributes indicate a need for further studies to evaluate the in-depth effects of farm-related factors on milk quality attributes.
Assuntos
Indústria de Laticínios , Leite , Agricultura , Animais , Bovinos , Fazendas , Feminino , Lactação , SuéciaRESUMO
This study investigated the influence of monthly variation on the composition and properties of raw farm milk collected as part of a full-scale cheese-making trial in a region in northern Sweden. In our companion paper, the contribution of on-farm factors to the variation in milk quality attributes is described. In total, 42 dairy farms were recruited for the study, and farm milk samples were collected monthly over 1 yr and characterized for quality attributes of importance for cheese making. Principal component analysis suggested that milk samples collected during the outdoor period (June-September) were different from milk samples collected during the indoor period. Despite the interaction with the milking system, the results showed that fat and protein concentrations were lower in milk collected during May through August, and lactose concentration was higher in milk collected during April through July than for the other months. Concentrations of free fatty acids were generally low, with the highest value (0.86 mmol/100 g of fat) observed in February and the lowest (0.70 mmol/100 g of fat) observed in June. Plasmin and plasminogen-derived activities varied with sampling month without a clear seasonal pattern. The pH of farm tank milk ranged from 6.60 to 6.82, with the lowest and highest values in September and February, respectively. The highest somatic cell count was observed in August (201 × 103 cells/mL) and the lowest in April (143 × 103 cells/mL). The highest value of gel strength, was recorded in December (88 Pa) and the lowest in July (64 Pa). Rennet coagulation time and gel strength were inversely correlated, with the lowest rennet coagulation time value observed in December. Orthogonal projections to latent structures (OPLS) and discriminant analysis adaptation of OPLS identified casein micelle size and total proteolysis as the milk quality attributes with major responses to sampling month, with smaller casein micelle size and higher total proteolysis associated with the outdoor months. Using discriminant analysis adaptation of OPLS to further investigate causes behind the variation in milk traits revealed that there were factors in addition to feeding on pasture that differed between outdoor and indoor months. Because fresh grass was seldom the primary feed in the region during the outdoor period, grazing was not considered the sole reason for the observed difference between outdoor and indoor periods in raw milk quality attributes.
Assuntos
Queijo , Leite , Animais , Caseínas , Bovinos , Indústria de Laticínios , Fazendas , SuéciaRESUMO
Camel milk has unique physical, nutritional, and technological properties when compared with other milks, especially bovine. Because proteins confer many of the properties of milk and its products, this study aimed to determine the proteins of camel milk, their correlations, and relative distribution. Raw milk samples were collected from 103 dromedary camels in the morning and evening. Capillary electrophoresis results showed wide variation in the concentrations (g/L) of proteins between samples as follows: α-lactalbumin, 0.3 to 2.9; αS1-casein, 2.4 to 10.3; αS2-casein, 0.3 to 3.9; ß-casein, 5.5 to 29.0; κ-casein, 0.1 to 2.4; unknown casein protein 1, 0.0 to 3.4; and unknown casein protein 2, 0.0 to 4.6. The range in percent composition of the 4 caseins were as follows: αS1, 12.7 to 35.3; αS2, 1.8 to 20.8; ß, 42.3 to 77.4; and κ, 0.6 to 17.4. The relative proportion of αS1-, αS2-, ß-, and κ-caseins in camel milk (26:4:67:3, wt/wt) differed from that of bovine milk (38:10:36:12, wt/wt). This difference might explain the dissimilarity between the 2 milks with respect to technical and nutritional properties.
Assuntos
Camelus , Caseínas/análise , Eletroforese Capilar/veterinária , Lactalbumina/análise , Leite/química , Animais , Bovinos , Proteínas do Leite/análise , Valor Nutritivo , Especificidade da EspécieRESUMO
Prevention of biofilm formation in milking equipment is important to ensure good hygiene quality of raw milk. Key factors to achieving good results are a successful cleaning procedure and a method to check the cleanliness of milking equipment surfaces. Adenosine triphosphate bioluminescence is a fast and easy method for investigating bacterial contamination of surfaces. However, previous studies on the potential of ATP bioluminescence to assess the hygiene status of milking equipment have been hampered by lack of a validated test procedure. The aim of this work was therefore to establish a test procedure for assessing the cleanliness of milking equipment using ATP bioluminescence, and apply the method on-farm to study the hygiene status of aging rubber material in milking equipment. In developing the test procedure, the effects of sampling location in tubes and liners, sampling of dry versus wet barrels, milking point in the parlor, and acid or alkali detergent on ATP values were investigated. The results showed that, to obtain reproducible results, replicate sampling from the same milking points in the parlor is important. For milk tubes, samples should preferably be taken from the milk meter side, for liners on the inside of the barrel. For best results, sampling should be performed after use of alkali detergent. No beneficial effect was observed of sampling dry liner barrels, so sampling in the standardized test procedure is performed directly after cleaning. The standardized test procedure was used on 3 different commercial farms and sampling was initiated after replacement of old rubber parts. On one of the farms, additional sampling was performed to evaluate total bacteria count and determine the association with ATP level. The results suggest that, provided an efficient cleaning procedure is used, the hygiene quality of milking equipment can be maintained during the recommended lifetime of the rubberware. However, due to occasional variation in cleaning efficiency between milking points and liner barrels, random sampling on single occasions can lead to incorrect conclusions. Replicate sampling over time is therefore important for correct interpretation of ATP bioluminescence data. If ATP levels are very high, complementary sampling for total bacteria count should be used to verify that the level is due to bacterial contamination, and not other organic ATP-contributing material (e.g., milk residues).
Assuntos
Trifosfato de Adenosina , Indústria de Laticínios/métodos , Higiene , Borracha , Animais , Carga Bacteriana , Fazendas , Feminino , Qualidade dos Alimentos , Luminescência , Medições Luminescentes/veterinária , Leite/microbiologiaRESUMO
The composition and properties of raw milk are of great importance for the quality and shelf life of the final dairy product, especially in products with a long shelf life [e.g., ultra-high-temperature (UHT)-treated milk]. The objective of this study was to investigate the compositional variation in raw milk samples before processing at the dairy plant. Moreover, we wanted to investigate the effect of the UHT process on this variation (i.e., if the same variation could be observed in the corresponding UHT milk). The quality traits analyzed included detailed milk composition, counts of total and psychrotrophic bacteria, proteolytic activity, and color, as well as predictive measures of stability (i.e., ethanol stability and heat coagulating time). Samples of raw milk and the corresponding produced UHT milk were collected and analyzed on a monthly basis during 1 yr. Principal component analysis was used to identify months showing similarities and differences with respect to total variation. In contrast to previous studies, we observed only small variations between months and no clear effect of season for the raw milk. For the UHT milk, July and the winter months (December, January, and February) tended to separate from the other months. Quality traits showing significant variation were only to some extent identical in raw milk and UHT-processed milk. A better understanding of the natural variation in raw milk quality will provide opportunities to improve the shelf life of UHT-treated milk products.
Assuntos
Leite/microbiologia , Temperatura , Animais , Temperatura Alta , Estações do Ano , SuéciaRESUMO
The objective of the studies reported in this research communication was to investigate differences in composition and enzymatic activities in bulk milk samples provided from Swedish dairy farms with different management systems, i.e. automated (AMS) and conventional milking systems (CMS). A bulk milk sample was collected from each of 104 dairy farms, 51 using AMS and 53 using CMS, located in the same geographical region. Sampling took place within two consecutive days during the indoor period (October). Milk samples were analysed for contents of total fat and protein, free fatty acids (FFA), caseins and whey proteins, somatic cell count (SCC), pH, plasmin and plasminogen derived activities, and total proteolysis. Our results showed a lower protein content and higher SCC in bulk milk from AMS herds compared with milk from CMS herds. Plasmin, plasminogen and total plasmin/ plasminogen derived activities were lower in milk from AMS herds but despite this, total casein and the ß-casein fraction as % of total protein were lower in milk from AMS herds than in milk from herds using CMS. Total proteolysis was higher in milk from AMS herds, suggesting that other proteases than plasmin, e.g. cellular and bacterial proteases, contributed to the degradation of casein. This was supported by a positive correlation between SCC and total proteolysis (P < 0·01), as well as a negative correlation between total proteolysis and ß-casein fraction (P < 0·05). In conclusion, comparing the quality of bulk milk from commercial dairy herds using AMS and CMS, respectively, several differences were observed, suggesting a significant effect from management system.
Assuntos
Bovinos , Indústria de Laticínios/instrumentação , Indústria de Laticínios/métodos , Leite/química , Leite/enzimologia , Animais , Caseínas/análise , Caseínas/metabolismo , Contagem de Células , Gorduras/análise , Ácidos Graxos não Esterificados/análise , Feminino , Fibrinolisina/metabolismo , Concentração de Íons de Hidrogênio , Lactação , Leite/citologia , Proteínas do Leite/análise , Plasminogênio/metabolismo , Proteólise , Suécia , Proteínas do Soro do Leite/análiseRESUMO
The aim of this study was to evaluate the influence of shortening the dry period of Swedish dairy cows on plasmin activity and casein composition in milk. Swedish Holstein and Swedish Red cows, 45 in total, were assigned to a dry period of either 4 or 8wk. Milk samples were taken 10 and 5wk prepartum, and 6 and 12wk postpartum. Plasmin activity and plasminogen activity were measured with a spectrophotometric assay. Casein composition was measured by capillary zone electrophoresis. Prepartum plasminogen activity increased by 22% between 10 and 5wk prepartum, whereas no change in plasmin activity was observed during the same period. Cows with a 4-wk dry period had 61% higher plasmin activity in postpartum milk than cows with an 8-wk dry period. Cows of third or greater parity tended to have a stronger increase in plasmin activity as a result of applying a short dry period than cows of second parity. Although the αS1- and ß-casein fractions declined with increasing plasmin activity, no dry period effects were found. Based on postpartum differences in plasmin activity, it was concluded that particularly multiparous cows require more than 4wk between lactations for recovery of the mammary epithelium. Changes in casein composition as an effect of plasmin activity are not expected to have a great effect on processing quality of milk, although future work is needed to verify this.
Assuntos
Fibrinolisina , Leite , Animais , Bovinos , Dieta/veterinária , Metabolismo Energético , Feminino , Lactação , Período Pós-Parto , SuéciaRESUMO
The objective of this study was to determine the lipolytic activity on milk fat of 2 bovine mastitis pathogens, that is, Staphylococcus aureus and Streptococcus agalactiae. The lipolytic activity was determined by 2 different techniques, that is, thin-layer chromatography and an extraction-titration method, in an experimental model using the most commonly occurring field strains of the 2 mastitic bacteria isolated from Swedish dairy farms. The microorganisms were inoculated into bacteria-free control milk and incubated at 37°C to reflect physiological temperatures in the mammary gland. Levels of free fatty acids (FFA) were analyzed at time of inoculation (t=0) and after 2 and 6h of incubation, showing significant increase in FFA levels. After 2h the FFA content had increased by approximately 40% in milk samples inoculated with Staph. aureus and Strep. agalactiae, and at 6h the pathogens had increased FFA levels by 47% compared with the bacteria-free control milk. Changes in lipid composition compared with the bacteria-free control were investigated at 2 and 6h of incubation. Diacylglycerols, triacylglycerols, and phospholipids increased significantly after 6h incubation with the mastitis bacteria, whereas cholesterol and sterol esters decreased. Our results suggest that during mammary infections with Staph. aureus and Strep. agalactiae, the action of lipases originating from the mastitis pathogens will contribute significantly to milk fat lipolysis and thus to raw milk deterioration.
Assuntos
Lipólise , Mastite Bovina/microbiologia , Leite/química , Staphylococcus aureus/enzimologia , Streptococcus agalactiae/enzimologia , Animais , Bovinos , Ácidos Graxos não Esterificados/metabolismo , Feminino , Lipase/metabolismo , Lipídeos/análise , Leite/microbiologia , Infecções Estafilocócicas/veterinária , Staphylococcus aureus/isolamento & purificação , Streptococcus agalactiae/isolamento & purificação , SuéciaRESUMO
This study investigated differences in the raw milk composition and technological properties between cows with different numbers of lactations. In total, 12 commercial herds were visited within a period of 12 weeks. On each farm, milk samples from five young cows (lactations 1-2) and five older cows (lactation ≥ 3) were collected. For each farm, milk samples from the young cows and the older cows, respectively, were pooled. The pooled milk samples were analyzed for gross composition and technological properties. Using principal component analysis (PCA) to assess the overall variation in milk quality attributes and the potential clustering of milk from young cows and older cows, respectively, an effect of breed, but no clear effect of lactation number, was observed. In contrast, one-way ANOVA showed higher plasmin activity (p = 0.002) in pooled milk from the older cows, whereas plasminogen-derived activity (p = 0.001) and total proteolysis (p = 0.029) were higher in milk from the young cows. Likewise, orthogonal projections to latent structure discriminant analysis (OPLS-DA) showed higher plasmin activity in milk from older cows, whereas younger cows had higher plasminogen-related activity and higher total proteolysis. To conclude, except for plasmin and plasminogen-related activities, there were no major differences in the composition and technological properties between milk from older cows and young cows.
RESUMO
The Grevé cheese, a semi-hard Swedish cheese, is well-known for its characteristic flavor and shape of eye formation. The size and distribution of the eyes play a crucial role for the sensory attributes, aesthetic value and quality of the cheese. This article focuses on investigating the feasibility of using computed tomography (CT) scanning as a non-destructive tool to observe early-stage eye formation in Grevé cheese within an industrial trial. It is crucial to achieve a perfect combination of small and big sized eyes, evenly distributed within the cheese wheel, without having cracks/splits for optimal quality. Such variations could be visualized using CT-scanning of cheeses at a young and mature stage by providing high-resolution, three-dimensional CT-scanning images of the cheese's internal structure, without the need for physical dissection. Further, the distribution of eyes, their shape and number, could be visualized and compared for the same cheese scanned at young and mature stages. Thus, the importance of monitoring eye formation through non-destructive techniques is emphasized to ensure consistent product quality.
RESUMO
The maturation of a traditional Swedish long-ripened cheese has shown increasing variation in recent years and the ripening time is now generally longer than in the past. While the cheese is reliant on non-starter lactic acid bacteria for the development of its characteristic flavour, we hypothesised that the observed changes could be due to variations in the microbiota composition and number of bacteria in the raw milk used for production of the cheese. To evaluate associations between microbiota in the raw milk and the resulting cheese, three clusters of commercial farms were created to increase variation in the microbiota of dairy silo milk used for cheese production. Cheese production was performed in three periods over one year. Within each period, milk from the three farm clusters was collected separately and transported to the cheese production facility. Following pasteurisation, the milk was processed into the granular-eyed cheese and matured at a dedicated cheese-ripening facility. For each cheese batch, farm bulk and dairy silo milk samples, a starter culture, early process samples and cheese samples from different stages of maturation (7-20 months) were collected and their microbiota characterised using 16S rRNA amplicon sequencing. The microbiota in the farm bulk milk differed significantly between periods and clusters. Differences in microbiota in dairy silo milk were observed between periods, but not between farm clusters, while the cheese microbiota differed between periods and clusters. The top 13 amplicon sequence variants were dominant in early process samples and the resulting cheese, making up at least 93.3% of the relative abundance (RA). Lactococcus was the dominant genus in the early process samples and, together with Leuconostoc, also dominated in the cheese samples. Contradicting expectations, the RA of the aroma-producing genus Lactobacillus was low in cheese during ripening and there was an unexpected dominance of starter lactic acid bacteria even at the later stages of cheese ripening. To identify factors behind the recent variations in ripening time of this cheese, future studies should address the effects of process variables and the dairy environment.
RESUMO
Interactive effects of casein micelle size and milk calcium and citrate content on rennet-induced coagulation were investigated. Milk samples containing small (SM) and large (LM) micelles, obtained from individual Holstein cows, were modified by addition of calcium and/or citrate and milk coagulation properties were evaluated in a full factorial design. The results showed that LM milk had a higher relative proportion of casein, coagulated faster, and resulted in a stronger gel than SM milk. Addition of calcium slightly decreased casein micelle size, while addition of citrate slightly increased micelle size. Calcium addition resulted in a shorter coagulation time and the strongest gels, while citrate addition increased the coagulation time and resulted in the weakest gels. Addition of calcium and citrate in combination resulted in intermediate coagulation properties. The interactive effect of micelle size and citrate was significant for gel strength. Microstructural differences between the milk gels were consistent with the rheological properties, for example, the micrographs revealed that a more homogeneous network was formed when calcium was added, resulting in a stronger gel. A more inhomogeneous network structure was formed when citrate was added, resulting in a weaker gel. Thus, variations in casein micelle size and in calcium and citrate content influence rennet-induced coagulation in bovine milk. The calcium and citrate contents in Swedish milk have changed over time, whereby calcium content has increased and citrate content has decreased. In practical cheese making, calcium is added to cheese milk, most likely altering the role of inherent citrate and possibly influencing casein micelle size. The observed interaction effect between casein micelle size and citrate in this study, suggests that larger micelles with moderate citrate level will result in firmer gels, whereas a higher citrate content reduced gel strength more in case of large than SM. Since firmer gels are likely to retain more protein and fat than less firmer gels, this interaction effect could have implications in practical cheese production.
Assuntos
Cálcio/análise , Caseínas/análise , Quimosina/metabolismo , Ácido Cítrico/análise , Micelas , Animais , Queijo/análise , Manipulação de Alimentos , Géis/química , Leite/química , ReologiaRESUMO
The composition of raw milk is important for the stability of dairy products with a long shelf-life. Based on known historical changes in raw milk composition, the aim of this study was to get a better understanding of how possible future variations in milk composition may affect the stability of dairy products. The effects of elevated calcium, citrate, and urea levels on the stability of ultra-high temperature (UHT) treated milk stored for 52 weeks at 4, 20, 30, and 37 °C were investigated by a two-level full factorial designed study with fat separation, fat adhesion, sedimentation, color, pH, ethanol stability, and heat coagulation time as response variables. The results showed that elevated level of calcium lowered the pH, resulting in sedimentation and significantly decreased stability. Elevated level of citrate was associated with color, but the stability was not improved compared to the reference UHT milk. Elevated levels of urea or interaction terms had little effect on the stability of UHT milk. Storage conditions significantly affected the stability. In conclusion, to continue produce dairy products with high stability, the dairy industry should make sure the calcium content of raw milk is not too high and that storage of the final product is appropriate.
RESUMO
In the ultra-high temperature (UHT) process, milk is subject to temperatures above 135 °C for few seconds giving a product with a shelf-life of several months. The raw milk quality, UHT process and storage conditions affect the stability. In this study, the stability of UHT milk produced in an indirect system was evaluated by studying changes in taste, colour, fat separation, fat adhesion to the package, sedimentation, gelation, heat coagulation time, pH and ethanol stability during storage for up to one year at different temperatures. UHT milk stored at 4 and 20 °C had the longest shelf-life of 34-36 weeks, limited by sediment formation. Storage at 30 and 37 °C considerably decreased the shelf-life of UHT milk to 16-20 weeks, whereby changes in sediment formation, taste and colour were the limiting factors. Our results suggest that the changes observed at the different storage temperatures can be explained by different known mechanisms.
RESUMO
The objectives of this study were to establish the proteolytic effects of Staphylococcus aureus during mastitis on economically important milk proteins. Concentrations of milk proteins were determined by capillary electrophoresis in an experimental model using a field strain of S. aureus. The pathogen was inoculated into bacteria-free control milk to imitate proteolysis caused by the pathogen in the mammary gland between milkings. Milk content of caseins (CN) α(S1), α(S2), κ, ß(A1), and ß(A2) and whey proteins α-lactalbumin and ß-lactoglobulin were analyzed initially and after 6 h of incubation. After 6 h, the overall CN content was significantly reduced (21%) in milk inoculated with S. aureus compared with the bacteria-free control milk. S. aureus significantly lowered concentration of α(S1)-CN (2.5%), ß(A1)-CN (3%), and ß(A2)-CN (5%). S. aureus also hydrolyzed κ-CN into para-κ-CN, with significant reduction of κ-CN (7.4%) as a consequence.