Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(21): 11613-11633, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37855680

RESUMO

Development of multicellular animals requires epigenetic repression by Polycomb group proteins. The latter assemble in multi-subunit complexes, of which two kinds, Polycomb Repressive Complex 1 (PRC1) and Polycomb Repressive Complex 2 (PRC2), act together to repress key developmental genes. How PRC1 and PRC2 recognize specific genes remains an open question. Here we report the identification of several hundreds of DNA elements that tether canonical PRC1 to human developmental genes. We use the term tether to describe a process leading to a prominent presence of canonical PRC1 at certain genomic sites, although the complex is unlikely to interact with DNA directly. Detailed analysis indicates that sequence features associated with PRC1 tethering differ from those that favour PRC2 binding. Throughout the genome, the two kinds of sequence features mix in different proportions to yield a gamut of DNA elements that range from those tethering predominantly PRC1 or PRC2 to ones capable of tethering both complexes. The emerging picture is similar to the paradigmatic targeting of Polycomb complexes by Polycomb Response Elements (PREs) of Drosophila but providing for greater plasticity.


Assuntos
DNA , Complexo Repressor Polycomb 1 , Animais , Humanos , Complexo Repressor Polycomb 1/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , DNA/genética , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Cromatina , Drosophila/genética
2.
Sci Adv ; 9(51): eadj8198, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38134278

RESUMO

Animals use the Polycomb system to epigenetically repress developmental genes. The repression requires trimethylation of lysine 27 of histone H3 (H3K27me3) by Polycomb Repressive Complex 2 (PRC2), but the dynamics of this process is poorly understood. To bridge the gap, we developed a computational model that forecasts H3K27 methylation in Drosophila with high temporal resolution and spatial accuracy of contemporary experimental techniques. Using this model, we show that pools of methylated H3K27 in dividing cells are defined by the effective concentration of PRC2 and the replication frequency. We find that the allosteric stimulation by preexisting H3K27me3 makes PRC2 better in methylating developmental genes as opposed to indiscriminate methylation throughout the genome. Applied to Drosophila development, our model argues that, in this organism, the intergenerationally inherited H3K27me3 does not "survive" rapid cycles of embryonic chromatin replication and is unlikely to transmit the memory of epigenetic repression to the offspring. Our model is adaptable to other organisms, including mice and humans.


Assuntos
Proteínas de Drosophila , Histonas , Humanos , Animais , Camundongos , Histonas/genética , Histonas/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Cromatina/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Drosophila/genética , Metilação
3.
PeerJ ; 8: e8424, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32025374

RESUMO

Microorganisms are essential constituents of ecosystems. To improve our understanding of how various factors shape microbial diversity and composition in nature it is important to study how microorganisms vary in space and time. Factors shaping microbial communities in ground level air have been surveyed in a limited number of studies, indicating that geographic location, season and local climate influence the microbial communities. However, few have surveyed more than one location, at high latitude or continuously over more than a year. We surveyed the airborne microbial communities over two full consecutive years in Kiruna, in the Arctic boreal zone, and Ljungbyhed, in the Southern nemoral zone of Sweden, by using a unique collection of archived air filters. We mapped both geographic and seasonal differences in bacterial and fungal communities and evaluated environmental factors that may contribute to these differences and found that location, season and weather influence the airborne communities. Location had stronger influence on the bacterial community composition compared to season, while location and season had equal influence on the fungal community composition. However, the airborne bacterial and fungal diversity showed overall the same trend over the seasons, regardless of location, with a peak during the warmer parts of the year, except for the fungal seasonal trend in Ljungbyhed, which fluctuated more within season. Interestingly, the diversity and evenness of the airborne communities were generally lower in Ljungbyhed. In addition, both bacterial and fungal communities varied significantly within and between locations, where orders like Rhizobiales, Rhodospirillales and Agaricales dominated in Kiruna, whereas Bacillales, Clostridiales and Sordariales dominated in Ljungbyhed. These differences are a likely reflection of the landscape surrounding the sampling sites where the landscape in Ljungbyhed is more homogenous and predominantly characterized by artificial and agricultural surroundings. Our results further indicate that local landscape, as well as seasonal variation, shapes microbial communities in air.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA