Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Arch Virol ; 163(12): 3357-3363, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30173353

RESUMO

Bracovirus is one of the two polydnavirus genera. Here, we used a cryo-EM analysis to reveal the near-native morphology of two nucleocapsid-containing model bracoviruses: Microplitis bicoloratus bracovirus (MbBV) and Microplitis mediator bracovirus (MmBV). MbBV and MmBV nucleocapsids have discernable cap structures in two distal regions with relatively high electron density. Adjacent to the end-cap structures are two electron-lucent rings. Some nucleocapsids were uniformly electron-dense and had a distinctive "helix-tail-like structure". Cryo-EM revealed inconsistent nucleocapsid diameters of 34-69.9 nm in MbBV and 46-69.9 nm in MmBV, and the largest observed cylindrical area length was expanded to 126 nm.


Assuntos
Nucleocapsídeo/ultraestrutura , Polydnaviridae/ultraestrutura , Vespas/virologia , Animais , Microscopia Crioeletrônica , Nucleocapsídeo/química , Nucleocapsídeo/isolamento & purificação , Polydnaviridae/química , Vírion/química , Vírion/isolamento & purificação , Vírion/ultraestrutura
2.
Arch Insect Biochem Physiol ; 99(1): e21473, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29862562

RESUMO

Little is known about how mammalian cells respond to the expression of innexins (Inxs), which are known to mediate cell-to-cell communication that causes apoptosis in the cells of the insect Spodoptera litura. The mammalian expression system, p3xFLAG tag protein, containing the CMV promoter, allowed us to construct two C-terminally elongated innexins (Cte-Inxs), SpliInx2 (Inx2-FLAG), and SpliInx3 (Inx3-FLAG), which were predicted to have the same secondary topological structures as the native SpliInx2 and SpliInx3. Here, we found that only the mRNAs of the two Cte-Inxs were expressed under the control of the CMV promoter in HeLa cells. Unexpectedly, mRNA expression of the two Cte-Inxs enhanced apoptosis of HeLa cells. The two Cte-Inx mRNAs were associated with a significant decrease in Akt phosphorylation in HeLa cells undergoing apoptosis. Furthermore, Inx3-FLAG mRNA expression in nonapoptotic HCT116 cells was also associated with a significant decrease in the levels of phosphorylated Akt. Intriguingly, expression of the mRNAs of the two Cte-Inxs did not activate caspase 3, but it markedly reduced Bid levels in HeLa cells undergoing apoptosis. These results suggest that mRNA expression of the two Cte-Inxs may activate a Bid-dependent apoptotic pathway in HeLa cells. Our study demonstrates that invertebrate gap junction mRNAs can function in vertebrate cancer cells as tumor suppressors.


Assuntos
Apoptose/genética , Comunicação Celular/genética , Proteínas de Insetos/genética , Transdução de Sinais/genética , Spodoptera/genética , Proteínas Supressoras de Tumor/genética , Animais , Células HeLa , Humanos , Proteínas de Insetos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Spodoptera/metabolismo , Proteínas Supressoras de Tumor/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-28557004

RESUMO

Two physiological changes of Spodoptera litura parasitized by Microplitis bicoloratus are hemocyte-apoptosis and retarded immature development. ß-Chain of Fo F1 -ATPase was found from a S. litura transcriptome. It belongs to a conserved P-loop NTPase superfamily, descending from a common ancestor of Lepidopteran clade. However, the characterization of ß-chain of ATPase in apoptotic cells and its involvement in development remain unknown. Here, the ectopic expression and endogenous Fo F1 -ATPase ß-chain occurred on S. litura cell membrane: in vivo, at the late stage of apoptotic hemocyte, endogenous Fo F1 -ATPase ß-chain was stably expressed during M. bicoloratus larva development from 4 to 7 days post-parasitization; in vitro, at an early stage of pre-apoptotic Spli221 cells by infecting with M. bicoloratus bracovirus particles, the proteins were speedily recover expression. Furthermore, endogenous Fo F1 -ATPase ß-chain was localized on the apoptotic cell membrane. RNA interference (RNAi) of Fo F1 -ATPase ß-chain led to significantly decreased head capsule width. This suggested that Fo F1 -ATPase ß-chain positively regulated the development of S. litura. The RNAi effect on the head capsule width was enhanced with parasitism. Our research found that Fo F1 -ATPase ß-chain was expressed and localized on the cell membrane in the apoptotic cells, and involved in the development of S. litura.


Assuntos
Interações Hospedeiro-Parasita , Polydnaviridae/fisiologia , ATPases Translocadoras de Prótons/metabolismo , Spodoptera/parasitologia , Vespas/virologia , Sequência de Aminoácidos , Animais , Apoptose , Hemócitos/enzimologia , Larva/parasitologia , Spodoptera/enzimologia , Spodoptera/crescimento & desenvolvimento , Vespas/fisiologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-28940716

RESUMO

Apoptotic hemocytes induced by Microplitis bicoloratus parasitism have been reported, and M. bicoloratus bracovirus (MbBV) is known to be the apoptosis inducer. However, the mechanism how MbBV regulates apoptosis remains unclear. eIF4A, one of translation initiation factors, was found from a Spodoptera litura transcriptome, the expression of which in the parasitized hemocytes of S. litura was inhibited in RT-qPCR analysis. The western blot also illustrated eIF4A at 6-day post-parasitization was inhibited in hemocytes. For testing interaction of MbBV-eIF4A-apoptosis, a cDNA clone encoding 1,266 bp of eIF4A was obtained from S. litura hemocytes and sequenced. Then, a 48 kDa V5-fusion protein of the eIF4A was detected by using the anti-V5 antibody at 72-h post-transfection in the High Five cells, which is located in the cell cytoplasm. In vitro, overexpression of eIF4A rescued the apoptotic High Five cells induced by MbBV. Conversely, in vivo, loss of eIF4A proteins by dsRNA feeding increased apoptosis of hemocytes. Furthermore, RNAi and parasitism significantly increased apoptosis of hemocytes in S. litura. These findings suggested that MbBV inhibited the expression of eIF4A, which was required for apoptosis mediated by MbBV. This study will contribute to biological pest control and enhance our understanding of molecular mechanisms underlying polydnavirus-parasitoid-host interaction.


Assuntos
Apoptose/fisiologia , Fatores de Iniciação em Eucariotos/metabolismo , Hemócitos/metabolismo , Vírus de Insetos/fisiologia , Mariposas/virologia , Sequência de Aminoácidos , Animais , Fatores de Iniciação em Eucariotos/genética , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Mariposas/metabolismo
5.
Arch Virol ; 161(11): 3095-124, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27522588

RESUMO

Polydnaviruses (PDVs) play a critical role in altering host gene expression to induce immunosuppression. However, it remains largely unclear how PDV genes affect host genes. Here, the complete genome sequence of Microplitis bicoloratus bracovirus (MbBV), which is known to be an apoptosis inducer, was determined. The MbBV genome consisted of 17 putative double-stranded DNA circles and 179 fragments with a total size of 336,336 bp and contained 116 open reading frames (ORFs). Based on conserved domains, nine gene families were identified, of which the IκB-like viral ankyrin (vank) family included 28 members and was one of the largest families. Among the 116 ORFs, 13 MbBV genes were expressed in hemocytes undergoing MbBV-induced apoptosis and further analyzed. Three vank genes (vank86, vank92, vank101) were expressed in hemocytes collected from Spodoptera litura larvae parasitized by M. bicoloratus, in which host NF-κB/IκBs, including relish, dorsal, and cactus, were also persistently expressed. When Spli221 cells were infected with MbBV viral particles, mRNA levels of host and viral NF-κB/IκB genes were persistent and also varied in Spli221 cells undergoing virus-induced pre-apoptosis cell from 1 to 5 hours postinfection. Both were then expressed in a time-dependent expression in virus-induced apoptotic cells. These data show that viral IκB-like transcription does not inhibit host NF-κB/IκB expression, suggesting that transcription of these genes might be regulated by different mechanisms.


Assuntos
DNA Viral/genética , Interações Hospedeiro-Patógeno , Himenópteros/virologia , NF-kappa B , Polydnaviridae/isolamento & purificação , Polydnaviridae/fisiologia , Transdução de Sinais , Animais , Apoptose , DNA Viral/química , Perfilação da Expressão Gênica , Genoma Viral , Hemócitos/fisiologia , Hemócitos/virologia , Larva/virologia , Polydnaviridae/genética , Análise de Sequência de DNA , Spodoptera/virologia
6.
Arch Insect Biochem Physiol ; 92(1): 24-37, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27030553

RESUMO

The hemichannel and gap junction channel are major portals for the release of factors responsible for the effects of apoptotic cells on the spread of apoptosis to neighboring cells and apoptotic corpse clearance, typically by phagocytes. The N-terminal cytoplasmic domain in the connexins, gap junction proteins in vertebrate, has been implicated in regulating channel closure. However, little is known about how the hemichannel close responds to apoptotic signaling transduction leading to the reduction of neighboring cellular apoptosis in an invertebrate. An insect Bac-to-Bac expression system, pFastBac(TM) HT A, allows us to construct an N-terminally elongated SpliInx2 (Nte-Inx2) and SpliInx3 (Nte-Inx3). Here, we demonstrated that recombinant baculovirus Bac-Nte-Inx2 (reBac-Net-Inx2) and Bac-Nte-Inx3 (reBac-Nte-Inx3) closed the endogenous hemichannel on the Sf9 cell surface. Importantly, primary baculovirus infections significantly caused early apoptosis, and this apoptosis was reduced by hemichannel-closed Sf9 cells at 24-h post-infection (PI). Although N-terminal-elongated residue led to the increase in the phosphorylated sites in both Nte-Inx2 and Nte-Inx3 and an additional transmembrane domain in Nte-Inx3, both the proteins localized on the cell surface, suggesting Nte-Inxs proteins could mediate hemichannel closure. Further supporting evidence showed that hemichannel closure was dependent on N-Inxs expressed by baculovirus polyhedrin promoter, which began to express at 18-24 h PI. These results identify an unconventional function of N-terminal-elongated innexins that could act as a plug to manipulate hemichannel closure and provide a mechanism connecting the effect of hemichannel closure directly to apoptotic signaling transduction from intracellular to extracellular compartment.


Assuntos
Apoptose , Conexinas/genética , Proteínas de Insetos/genética , Spodoptera/fisiologia , Animais , Baculoviridae/fisiologia , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Proteínas de Insetos/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/fisiologia , Larva/virologia , Transdução de Sinais , Spodoptera/genética , Spodoptera/crescimento & desenvolvimento , Spodoptera/virologia
7.
Front Immunol ; 14: 1289477, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38146373

RESUMO

Parasitoid wasps control pests via a precise attack leading to the death of the pest. However, parasitoid larvae exhibit self-protection strategies against bracovirus-induced reactive oxygen species impairment. This has a detrimental effect on pest control. Here, we report a strategy for simulating Microplitis bicoloratus bracovirus using Mix-T dsRNA targeting 14 genes associated with transcription, translation, cell-cell communication, and humoral signaling pathways in the host, and from wasp extracellular superoxide dismutases. We implemented either one-time feeding to the younger instar larvae or spraying once on the corn leaves, to effectively control the invading pest Spodoptera frugiperda. This highlights the conserved principle of "biological pest control," as elucidated by the triple interaction of parasitoid-bracovirus-host in a cooperation strategy of bracovirus against its pest host.


Assuntos
Polydnaviridae , Vespas , Animais , Spodoptera , Polydnaviridae/genética , Interações Hospedeiro-Parasita , Larva
8.
Viruses ; 14(10)2022 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-36298738

RESUMO

The viral envelope is essential for virus maturation. Virus-mediated syncytium formations are induced by viral envelope proteins that cause membrane fusion of the infected cells. Polydnaviridae (Polydnavirus) are enveloped viruses with multiple nucleocapsids, and virions mature in symbiotic parasitoid wasp ovaries. However, the mechanism governing the envelope packaging of multiple nucleocapsids remains unclear. In this study, we used transmission electron microscopy to examine the process whereby multiple nucleocapsids of Microplitis bicoloratus bracovirus are packaged into an envelope and observed envelope-fusion-syncytium formation in symbiotic wasp calyx cells during virus maturation. The virus maturation process in calyx cells comprised four stages: pre-virogenic stroma, virogenic stroma, assembly, and fusion. Each virus contained a single envelope with one nucleocapsid in the assembly stage; multiple envelopes then fused to form a viral envelope with multiple nucleocapsids (i.e., the envelope-fusion-syncytium) around the envelope fusion core in the fusion stage. The envelope-fusion-syncytium then stabilized the virions that were released into the lumen of the ovary across the calyx epithelial layer. The phagocytic calyx epithelial cells on the border of the calyx and ovary lumen cleared the majority of non-enveloped nucleocapsids. In contrast, non-phagocytic calyx epithelial cells with microvilli and a cuticular line between the ovary wall and the lumen remained intact in the ovary lumen. These results indicate that envelope-fusion-syncytium formation is important for packaging multiple nucleocapsids in bracovirus maturation.


Assuntos
Polydnaviridae , Vespas , Animais , Feminino , Polydnaviridae/genética , Proteínas do Envelope Viral , Nucleocapsídeo , Células Gigantes
9.
Front Immunol ; 13: 882706, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911693

RESUMO

Hemichannels (HCs)/gap junctions (GJs) and immunoglobulin (Ig)-like domain-containing proteins (IGLDCPs) are involved in the innate-adaptive immune response independently. Despite of available evidence demonstrating the importance of HCs/GJs and IGLDCPs in initiating, implementing, and terminating the entire immune response, our understanding of their mutual interactions in immunological function remains rudimentary. IGLDCPs include immune checkpoint molecules of the immunoglobulin family expressed in T and B lymphocytes, most of which are cluster of differentiation (CD) antigens. They also constitute the principal components of the immunological synapse (IS), which is formed on the cell surface, including the phagocytic synapse, T cell synapse, B cell synapse, and astrocytes-neuronal synapse. During the three stages of the immune response, namely innate immunity, innate-adaptive immunity, and adaptive immunity, HCs/GJs and IGLDCPs are cross-activated during the entire process. The present review summarizes the current understanding of HC-released immune signaling factors that influence IGLDCPs in regulating innate-adaptive immunity. ATP-induced "eat me" signals released by HCs, as well as CD31, CD47, and CD46 "don't eat me" signaling molecules, trigger initiation of innate immunity, which serves to regulate phagocytosis. Additionally, HC-mediated trogocytosis promotes antigen presentation and amplification. Importantly, HC-mediated CD4+ T lymphocyte activation is critical in the transition of the innate immune response to adaptive immunity. HCs also mediate non-specific transcytosis of antibodies produced by mature B lymphocytes, for instance, IgA transcytosis in ovarian cancer cells, which triggers innate immunity. Further understanding of the interplay between HCs/GJs and IGLDCPs would aid in identifying therapeutic targets that regulate the HC-Ig-like domain immune response, thereby providing a viable treatment strategy for immunological diseases. The present review delineates the clinical immunology-related applications of HC-Ig-like domain cross-activation, which would greatly benefit medical professionals and immunological researchers alike. HCs/GJs and IGLDCPs mediate phagocytosis via ATP; "eat me and don't eat me" signals trigger innate immunity; HC-mediated trogocytosis promotes antigen presentation and amplification in innate-adaptive immunity; HCs also mediate non-specific transcytosis of antibodies produced by mature B lymphocytes in adaptive immunity.


Assuntos
Imunidade Adaptativa , Imunidade Inata , Trifosfato de Adenosina , Antígenos CD , Junções Comunicantes , Domínios de Imunoglobulina
10.
Front Immunol ; 13: 901593, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664011

RESUMO

A typical characteristics of polydnavirus (PDV) infection is a persistent immunosuppression, governed by the viral integration and expression of virulence genes. Recently, activation of caspase-3 by Microplitis bicoloratus bracovirus (MbBV) to cleave Innexins, gap junction proteins, has been highlighted, further promoting apoptotic cell disassembly and apoptotic body (AB) formation. However, whether ABs play a role in immune suppression remains to be determined. Herein, we show that ABs transmitted immunosuppressive signaling, causing recipient cells to undergo apoptosis and dismigration. Furthermore, the insertion of viral-host integrated motif sites damaged the host genome, stimulating eIF5A nucleocytoplasmic transport and activating the eIF5A-hypusination translation pathway. This pathway specifically translates apoptosis-related host proteins, such as P53, CypA, CypD, and CypJ, to drive cellular apoptosis owing to broken dsDNA. Furthermore, translated viral proteins, such Vank86, 92, and 101, known to complex with transcription factor Dip3, positively regulated DHYS and DOHH transcription maintaining the activation of the eIF5A-hypusination. Mechanistically, MbBV-mediated extracellular vesicles contained inserted viral fragments that re-integrated into recipients, potentially via the homologous recombinant repair system. Meanwhile, this stimulation regulated activated caspase-3 levels via PI3K/AKT 308 and 473 dephosphorylation to promote apoptosis of granulocyte-like recipients Sf9 cell; maintaining PI3K/AKT 473 phosphorylation and 308 dephosphorylation inhibited caspase-3 activation leading to dismigration of plasmatocyte-like recipient High Five cells. Together, our results suggest that integration-mediated eIF5A hypusination drives extracellular vesicles for continuous immunosuppression.


Assuntos
Vesículas Extracelulares , Polydnaviridae , Caspase 3 , Fosfatidilinositol 3-Quinases , Polydnaviridae/fisiologia , Proteínas Proto-Oncogênicas c-akt
11.
iScience ; 24(4): 102281, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33817584

RESUMO

Cell-cell communication is necessary for cellular immune response. Hemichannel closure disrupts communication between intracellular and extracellular environments during polydnavirus-induced immunosuppression in invertebrates. However, the effects of hemichannel closure on cellular immune response are unclear. Here, we examined apoptotic body formation triggered by hemichannel closure in hemocytes of Spodoptera litura infected with bracovirus from the parasitic wasp, Microplitis bicoloratus. We showed that Microplitis bicoloratus bracovirus (MbBV) induced apoptotic cell disassembly, accompanied by hemichannel closure. Hemocyte apoptotic body formation was caused by the dysregulation of the innexins (Inxs), Inx1, Inx2, Inx3, and Inx4, during the MbBV-mediated inhibition of pI3K/AKT signaling and activation of caspase-3, which cleaved gap junction Inx proteins. Our results showed that hemichannel opening or closure in response to various stimuli, which induces the modulation of Inx levels, could inhibit or activate apoptotic body formation, respectively. Therefore, the "hemichannel open and close" model may regulate the cellular immune response.

12.
Dev Comp Immunol ; 118: 103994, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33417999

RESUMO

Microplitis bicoloratus bracovirus (MbBV) inhibits the immune response of the host Spodoptera litura by disrupting nuclear factor (NF)-κB signaling and downstream gene expression. However, the underlying molecular mechanisms are not well understood. Herein, we report that viral ankyrin (Vank) proteins interacted with host dorsal-interacting protein 3 (Dip3) to selectively inhibit the transcription of eukaryotic translation initiation factor 4 E (eIF4E). Dip3 and Vank proteins were co-expressed and colocalized in the nucleus. Furthermore, ectopic expression of Dip3 rescued the transcription of some NF-κB-dependent genes suppressed by Vank proteins, including eIF4E. Co-immunoprecipitation and pull-down assays confirmed that Vank proteins interacted with and bound to full-length Dip3, which including MADF, DNA-binding protein, BESS, and protein-protein interaction motifs as well as non-motif sequences. In vivo, RNAi-mediated dip3 silencing decreased eIF4E levels and was accompanied by an immunosuppressive phenotype in S. litura. Our results provided novel insights into the regulation of host transcription during immune suppression by viral proteins that modulate nuclear NF-κB signaling.


Assuntos
Fator de Iniciação 4E em Eucariotos/metabolismo , Himenópteros/imunologia , Proteínas de Insetos/metabolismo , Polydnaviridae/patogenicidade , Proteínas Virais/metabolismo , Animais , Regulação da Expressão Gênica/imunologia , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Himenópteros/genética , Himenópteros/metabolismo , Himenópteros/virologia , Evasão da Resposta Imune/genética , Polydnaviridae/metabolismo
13.
Cancers (Basel) ; 13(1)2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33379194

RESUMO

Connexin-containing gap junctions mediate the direct exchange of small molecules between cells, thus promoting cell-cell communication. Connexins (Cxs) have been widely studied as key tumor-suppressors. However, certain Cx subtypes, such as Cx43 and Cx26, are overexpressed in metastatic tumor lesions. Cyclic adenosine monophosphate (cAMP) signaling regulates Cx expression and function via transcriptional control and phosphorylation. cAMP also passes through gap junction channels between adjacent cells, regulating cell cycle progression, particularly in cancer cell populations. Low levels of cAMP are sufficient to activate key effectors. The present review evaluates the mechanisms underlying Cx regulation by cAMP signaling and the role of gap junctions in cancer progression and metastasis. A deeper understanding of these processes might facilitate the development of novel anticancer drugs.

14.
Front Oncol ; 10: 599383, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33425756

RESUMO

Connexins (Cxs) are involved in the brain metastasis of lung cancer cells. Thus, it is necessary to determine whether gap junction-forming Cxs are involved in the communication between lung cancer cells and the host cells, such as endothelial cells, forming the brain-blood-barrier, and cells in the central nervous system. Data from multiple studies support that Cxs function as tumor suppressors during lung cancer occurrence. However, recent evidence suggests that during metastasis to the brain, cancer cells establish communication with the host. This review discusses junctional or non-junctional hemichannel studies in lung cancer development and brain metastasis, highlighting important unanswered questions and controversies.

15.
Dev Comp Immunol ; 95: 101-107, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30776419

RESUMO

Eukaryotic initiation factor 4E (eIF4E) is regulated during the innate immune response. However, its translational regulation under innate immune suppression remains largely unexplored. Microplitis bicoloratus bracovirus (MbBV), a symbiotic virus harbored by the parasitoid wasp, Microplitis bicoloratus, suppresses innate immunity in parasitized Spodoptera litura. Here, we generated eIF4E dsRNA and used it to silence the eIF4E gene of S. litura, resulting in a hallmark immunosuppressive phenotype characterized by increased apoptosis of hemocytes and retardation of head capsule width development. In response to natural parasitism, loss of eIF4E function was associated with similar immunosuppression, and we detected no significant differences between the response to parasitism and treatment with eIF4E RNAi. Under MbBV infection, eIF4E overexpression significantly suppressed MbBV-induced increase in apoptosis and suppressed apoptosis to the same extent as co-expression of both eIF4E and eIF4A. There were no significant differences between MbBV-infected and uninfected larvae in which eIF4E was overexpressed. More importantly, in the eIF4E RNAi strain, eIF4A RNAi did not increase apoptosis. Collectively, our results indicate that eIF4E plays a nodal role in the MbBV-suppressed innate immune response via the eIF4E-eIF4A axis.


Assuntos
Interações Hospedeiro-Parasita/imunologia , Proteínas de Insetos/imunologia , Polydnaviridae/imunologia , Spodoptera/imunologia , Animais , Apoptose/genética , Apoptose/imunologia , Linhagem Celular , Fator de Iniciação 4A em Eucariotos/genética , Fator de Iniciação 4A em Eucariotos/imunologia , Fator de Iniciação 4A em Eucariotos/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/imunologia , Fator de Iniciação 4E em Eucariotos/metabolismo , Feminino , Imunidade Inata , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Interferência de RNA , Transdução de Sinais/imunologia , Spodoptera/parasitologia , Simbiose/imunologia , Vespas/imunologia , Vespas/microbiologia
16.
Dev Comp Immunol ; 92: 129-139, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30471301

RESUMO

In the parasitoid/polydnavirus/host system, polydnaviruses protect larva development in the host hemocoel by suppressing the host immune response. However, the negative effects on the parasitoid and the strategy of the parasitoid to deal with this disadvantage are still unknown. Microplitis bicoloratus bracovirus induces granulocyte apoptosis to suppress immune responses, resulting in an apoptotic haemolymph environment in which immature M. bicoloratus larva develop. Here, we determined the transcriptional profiles of immature M. bicoloratus across five time-points throughout the immature developmental process from egg to third instar. Dynamic gene expression pattern analysis revealed clear rapid changes in gene expression characteristic of each developmental stage, indicating faster sequential unambiguous functional division during development. Combined with the proteome of the host haemolymph, immature parasitoids likely secreted a Cu/Zn superoxide dismutase to reduce reactive oxygen species generation by symbiotic bracovirus. These data established a basis for further studies of parasitoid/host interactions and identified a novel positive self-protection mechanism for the parasitoid.


Assuntos
Granulócitos/fisiologia , Hemolinfa/imunologia , Polydnaviridae/fisiologia , Spodoptera/fisiologia , Superóxido Dismutase-1/metabolismo , Animais , Apoptose , Regulação da Expressão Gênica no Desenvolvimento , Hemócitos/fisiologia , Interações Hospedeiro-Patógeno , Terapia de Imunossupressão , Larva , Proteoma , Espécies Reativas de Oxigênio/metabolismo , Simbiose
17.
Acta Biochim Biophys Sin (Shanghai) ; 38(8): 577-85, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16894481

RESUMO

Microplitis bicoloratus is a braconid endoparasitic wasp associated with the polydnavirus named Microplitis bicoloratus bracovirus (MbBV). Parasitism of Spodoptera litura larvae leads to an impaired cellular immune response and to the disappearance of the 42 kDa actin in host hemocytes. In this work, we investigated if the absence of actin in blood cells was related to MbBV infection. An MbBV gene similar to egf-like genes identified in another bracovirus was partially cloned and named Mbcrp1. The full-length gene, named Mbcrp, is transcribed throughout the course of parasitism in host hemocytes and the 30 kDa MbCRP protein was detected in hemocytes 6-7 d post-parasitization. The Mbcrp1 gene contains the cysteine-rich trypsin inhibitor-like (TIL) domain coding sequence and the expression of recombinant MbCRP1 inhibited the expression of the 42 kDa actin in Hi5 cells. The 34.1 kDa MbCRP1-green fluorescent protein fusion protein locate specifically in the cytoplasm. These results suggest that expression of MbCRP in lepidopteran insect cells is related to the disruption of the actin cytoskeleton.


Assuntos
Citoesqueleto de Actina/metabolismo , Hemócitos/virologia , Lepidópteros/virologia , Polydnaviridae/genética , Proteínas Virais/metabolismo , Vespas/virologia , Sequência de Aminoácidos , Animais , Baculoviridae/genética , Sequência de Bases , Linhagem Celular , Clonagem Molecular , DNA Viral/química , Fator de Crescimento Epidérmico/genética , Feminino , Hemócitos/metabolismo , Hemócitos/parasitologia , Interações Hospedeiro-Parasita , Larva/parasitologia , Larva/virologia , Lepidópteros/citologia , Lepidópteros/parasitologia , Dados de Sequência Molecular , Polydnaviridae/ultraestrutura , RNA Mensageiro/metabolismo , Spodoptera/crescimento & desenvolvimento , Spodoptera/parasitologia , Spodoptera/virologia , Proteínas Virais/genética , Vírion/ultraestrutura , Vespas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA