Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nature ; 565(7741): 631-635, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30700869

RESUMO

Proton-exchange-membrane fuel cells (PEMFCs) are attractive next-generation power sources for use in vehicles and other applications1, with development efforts focusing on improving the catalyst system of the fuel cell. One problem is catalyst poisoning by impurity gases such as carbon monoxide (CO), which typically comprises about one per cent of hydrogen fuel2-4. A possible solution is on-board hydrogen purification, which involves preferential oxidation of CO in hydrogen (PROX)3-7. However, this approach is challenging8-15 because the catalyst needs to be active and selective towards CO oxidation over a broad range of low temperatures so that CO is efficiently removed (to below 50 parts per million) during continuous PEMFC operation (at about 353 kelvin) and, in the case of automotive fuel cells, during frequent cold-start periods. Here we show that atomically dispersed iron hydroxide, selectively deposited on silica-supported platinum (Pt) nanoparticles, enables complete and 100 per cent selective CO removal through the PROX reaction over the broad temperature range of 198 to 380 kelvin. We find that the mass-specific activity of this system is about 30 times higher than that of more conventional catalysts consisting of Pt on iron oxide supports. In situ X-ray absorption fine-structure measurements reveal that most of the iron hydroxide exists as Fe1(OH)x clusters anchored on the Pt nanoparticles, with density functional theory calculations indicating that Fe1(OH)x-Pt single interfacial sites can readily react with CO and facilitate oxygen activation. These findings suggest that in addition to strategies that target oxide-supported precious-metal nanoparticles or isolated metal atoms, the deposition of isolated transition-metal complexes offers new ways of designing highly active metal catalysts.

2.
Nano Lett ; 24(4): 1197-1204, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38227967

RESUMO

Electrocatalytic reduction of nitrate to ammonia (NO3RR) is gaining attention for low carbon emissions and environmental protection. However, low ammonia production rate and poor selectivity have remained major challenges in this multi-proton coupling process. Herein, we report a facile strategy toward a novel Fe-based hybrid structure composed of Fe single atoms and Fe3C atomic clusters that demonstrates outstanding performance for synergistic electrocatalytic NO3RR. By operando synchrotron Fourier transform infrared spectroscopy and theoretical computation, we clarify that Fe single atoms serve as the active site for NO3RR, while Fe3C clusters facilitate H2O dissociation to provide protons (*H) for continued hydrogenation reactions. As a result, the Fe-based electrocatalyst exhibits ammonia Faradaic efficiency of nearly 100%, with a corresponding production rate of 24768 µg h-1 cm-2 at -0.4 V vs RHE, exceeding most reported metal-based catalysts. This research provides valuable guidance toward multi-step reactions.

3.
Nano Lett ; 24(10): 3213-3220, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38426819

RESUMO

Rational design of well-defined active sites is crucial for promoting sluggish oxygen reduction reactions. Herein, leveraging the surfactant-oriented and solvent-ligand effects, we develop a facile self-assembly strategy to construct a core-shell catalyst comprising a high-index Pt shell encapsulating a PtCu3 intermetallic core with efficient oxygen-reduction performance. Without undergoing a high-temperature route, the ordered PtCu3 is directly fabricated through the accelerated reduction of Cu2+, followed by the deposition of the remaining Pt precursor onto its surface, forming high-index steps oriented by the steric hindrance of surfactant. This approach results in a high half-wave potential of 0.911 V versus reversible hydrogen electrode, with negligible deactivation even after 15000-cycle operation. Operando spectroscopies identify that this core-shell catalyst facilitates the conversion of oxygen-involving intermediates and ensures antidissolution ability. Theoretical investigations rationalize that this improvement is attributed to reinforced electronic interactions around high-index Pt, stabilizing the binding strength of rate-determining OHads species.

4.
Nano Lett ; 23(1): 235-242, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36574348

RESUMO

The emerging metal nanocluster provides a platform for the investigation of structural features, unique properties, and structure-property correlation of nanomaterials at the atomic level. Construction of open sites on the surface of the metal nanocluster is a long-pursued but challenging goal. Herein, we realized the construction of "open organic sites" in a metal nanocluster for the first time. Specifically, we introduce the PNP (2,6-bis(diphenylphosphinomethyl)pyridine) pincer ligand in the synthesis of the gold nanocluster, enabling the construction of a structurally precise Au8(PNP)4 nanocluster. The rigidity and the unique bonding mode of PNP lead to open nitrogen sites on the surface of the Au8(PNP)4 nanocluster, which have been utilized as multifunctional sites in this work for efficient kinetic resolution and catalysis. The gold pincer nanocluster and the open nitrogen site-induced performance will be enlightening for the construction of multifunctional metal nanoclusters.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Ouro/química , Nanopartículas Metálicas/química , Nanoestruturas/química , Catálise
5.
Angew Chem Int Ed Engl ; : e202410545, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940407

RESUMO

Rational design of efficient methanol oxidation reaction (MOR) catalyst that undergo non-CO pathway is essential to resolve the long-standing poisoning issue. However, it remains a huge challenge due to the rather difficulty in maximizing the non-CO pathway by the selective coupling between the key *CHO and *OH intermediates. Here, we report a high-performance electrocatalyst of patchy atomic-layer Pt epitaxial growth on CeO2 nanocube (Pt ALs/CeO2) with maximum electron-metal support interactions for enhancing the coupling selectively. The small-size monolayer material achieves an optimal geometrical distance between edge Pt-O-Ce sites and *OH absorbed on CeO2, which well restrains the dehydrogenation of *CHO, resulting in the non-CO pathway. Meanwhile, the *CHO/*CO intermediate generated at inner Pt-O-Ce sites can migrate to edge, inducing the subsequent coupling reaction, thus avoiding poisoning while promoting reaction efficiency. Consequently, Pt ALs/CeO2 exhibits exceptionally catalytic stability with negligible degradation even under 1000 s pure CO poisoning operation and high mass activity (14.87 A/mgPt), enabling it one of the best-performing alkali-stable MOR catalysts.

6.
Angew Chem Int Ed Engl ; 62(16): e202218630, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36732313

RESUMO

The transformation from metal nanocluster catalysts to metal single-atom catalysts is an important procedure in the rational design of atomically dispersed metal catalysts (ADCs). However, the conversion methods often involve high annealing temperature as well as reducing atmosphere. Herein, we reported a continuous and convenient approach to transfer Pd nanocluster into Pd single-atom in a ligand assisted annealing procedure, by which means we reduced its activating temperature low to 400 °C. Using ex-situ microscopy and spectroscopy, we comprehensively monitored the structural evolution of Pd species though the whole atomization process. Theoretical calculation revealed that the structural instability caused by remaining Cl ligands was the main reason for this low-temperature transformation. The present atomization strategy and mechanistic knowledge for the conversion from cluster to atomic dispersion provides guidelines for the rational design of ADCs.

7.
Angew Chem Int Ed Engl ; 62(13): e202217719, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36692894

RESUMO

The construction and understanding of synergy in well-defined dual-atom active sites is an available avenue to promote multistep tandem catalytic reactions. Herein, we construct a dual-hetero-atom catalyst that comprises adjacent Cu-N4 and Se-C3 active sites for efficient oxygen reduction reaction (ORR) activity. Operando X-ray absorption spectroscopy coupled with theoretical calculations provide in-depth insights into this dual-atom synergy mechanism for ORR under realistic device operation conditions. The heteroatom Se modulator can efficiently polarize the charge distribution around symmetrical Cu-N4 moieties, and serve as synergistic site to facilitate the second oxygen reduction step simultaneously, in which the key OOH*-(Cu1 -N4 ) transforms to O*-(Se1 -C2 ) intermediate on the dual-atom sites. Therefore, this designed catalyst achieves satisfied alkaline ORR activity with a half-wave potential of 0.905 V vs. RHE and a maximum power density of 206.5 mW cm-2 in Zn-air battery.

8.
Nature ; 529(7584): 68-71, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26738592

RESUMO

Electroreduction of CO2 into useful fuels, especially if driven by renewable energy, represents a potentially 'clean' strategy for replacing fossil feedstocks and dealing with increasing CO2 emissions and their adverse effects on climate. The critical bottleneck lies in activating CO2 into the CO2(•-) radical anion or other intermediates that can be converted further, as the activation usually requires impractically high overpotentials. Recently, electrocatalysts based on oxide-derived metal nanostructures have been shown to enable CO2 reduction at low overpotentials. However, it remains unclear how the electrocatalytic activity of these metals is influenced by their native oxides, mainly because microstructural features such as interfaces and defects influence CO2 reduction activity yet are difficult to control. To evaluate the role of the two different catalytic sites, here we fabricate two kinds of four-atom-thick layers: pure cobalt metal, and co-existing domains of cobalt metal and cobalt oxide. Cobalt mainly produces formate (HCOO(-)) during CO2 electroreduction; we find that surface cobalt atoms of the atomically thin layers have higher intrinsic activity and selectivity towards formate production, at lower overpotentials, than do surface cobalt atoms on bulk samples. Partial oxidation of the atomic layers further increases their intrinsic activity, allowing us to realize stable current densities of about 10 milliamperes per square centimetre over 40 hours, with approximately 90 per cent formate selectivity at an overpotential of only 0.24 volts, which outperforms previously reported metal or metal oxide electrodes evaluated under comparable conditions. The correct morphology and oxidation state can thus transform a material from one considered nearly non-catalytic for the CO2 electroreduction reaction into an active catalyst. These findings point to new opportunities for manipulating and improving the CO2 electroreduction properties of metal systems, especially once the influence of both the atomic-scale structure and the presence of oxide are mechanistically better understood.

9.
J Chem Phys ; 157(7): 074304, 2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-35987581

RESUMO

Determining the atomic structure of clusters has been a long-term challenge in theoretical calculations due to the high computational cost of density-functional theory (DFT). Deep learning potential (DP), as an alternative way, has been demonstrated to be able to conduct cluster simulations with close-to DFT accuracy but at a much lower computational cost. In this work, we update 34 structures of the 41 Cu clusters with atomic numbers ranging from 10 to 50 by combining global optimization and the DP model. The calculations show that the configuration of small Cun clusters (n = 10-15) tends to be oblate and it gradually transforms into a cage-like configuration as the size increases (n > 15). Based on the updated structures, their relative stability and electronic properties are extensively studied. In addition, we select three different clusters (Cu13, Cu38, and Cu49) to study their electrocatalytic ability of CO2 reduction. The simulation indicates that the main product is CO for these three clusters, while the selectivity of hydrocarbons is inhibited. This work is expected to clarify the ground-state structures and fundamental properties of Cun clusters, and to guide experiments for the design of Cu-based catalysts.

10.
J Comput Chem ; 40(9): 980-987, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30431652

RESUMO

The direct Z-scheme system constructed by two-dimensional (2D) materials is an efficient route for hydrogen production from photocatalytic water splitting. In the present work, the 2D van der Waals (vdW) heterojunctions of MoSe2 /SnS2 , MoSe2 /SnSe2 , MoSe2 /CrS2 , MoTe2 /SnS2 , MoTe2 /SnSe2 , and MoTe2 /CrS2 are proposed to be promising candidates for direct Z-scheme photocatalysts and verified by first principles calculations. Perpendicular electric field is induced in these 2D vdW heterojunctions, which enhances the efficiency of solar energy utilization. Replacing MoSe2 with MoTe2 not only facilitates the interlayer carrier migration, but also improves the optical absorption properties for these heterojunctions. Excitingly, the 2D vdW MoTe2 /CrS2 heterojunction is demonstrated, for the first time, to be 2D near-infrared-light driven photocatalyst for direct Z-scheme water splitting. © 2018 Wiley Periodicals, Inc.

11.
Nano Lett ; 18(10): 6312-6317, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30238753

RESUMO

Two-dimensional (2D) materials with the vertical intrinsic electric fields show great promise in inhibiting the recombination of photogenerated carriers and widening light absorption region for the photocatalytic applications. For the first time, we investigated the potential feasibility of the experimentally attainable 2D M2X3 (M = Al, Ga, In; X = S, Se, Te) family featuring out-of-plane ferroelectricity used in photocatalytic water splitting. By using first-principles calculations, all the nine members of 2D M2X3 are verified to be available photocatalysts for overall water splitting. The predicted solar-to-hydrogen efficiency of Al2Te3, Ga2Se3, Ga2Te3, In2S3, In2Se3, and In2Te3 are larger than 10%. Excitingly, In2Te3 is manifested to be an infrared-light driven photocatalyst, and its solar-to-hydrogen efficiency limit using the full solar spectrum even reaches up to 32.1%, which breaks the conventional theoretical efficiency limit.

12.
Angew Chem Int Ed Engl ; 56(40): 12191-12196, 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28782165

RESUMO

Knowledge of the photocatalytic H2 evolution mechanism is of great importance for designing active catalysts toward a sustainable energy supply. An atomic-level insight, design, and fabrication of single-site Co1 -N4 composite as a prototypical photocatalyst for efficient H2 production is reported. Correlated atomic characterizations verify that atomically dispersed Co atoms are successfully grafted by covalently forming a Co1 -N4 structure on g-C3 N4 nanosheets by atomic layer deposition. Different from the conventional homolytic or heterolytic pathway, theoretical investigations reveal that the coordinated donor nitrogen increases the electron density and lowers the formation barrier of key Co hydride intermediate, thereby accelerating H-H coupling to facilitate H2 generation. As a result, the composite photocatalyst exhibits a robust H2 production activity up to 10.8 µmol h-1 , 11 times higher than that of pristine counterpart.

13.
Materials (Basel) ; 17(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38793444

RESUMO

Developing an inexpensive and efficient catalyst for a hydrogen evolution reaction (HER) is an effective measure to alleviate the energy crisis. Single-atom catalysts (SACs) based on Janus materials demonstrated promising prospects for the HER. Herein, density functional theory calculations were conducted to systematically investigate the performance of SACs based on the BiTeBr monolayer. Among the one hundred and forty models that were constructed, fourteen SACs with potential HER activity were selected. Significantly, the SAC, in which a single Ru atom is anchored on a BiTeBr monolayer with a Bi vacancy (RuS2/VBi-BiTeBr), exhibits excellent HER activity with an ultra-low |ΔGH*| value. A further investigation revealed that RuS2/VBi-BiTeBr tends to react through the Volmer-Heyrovsky mechanism. An electronic structure analysis provided deeper insights into this phenomenon. This is because the Tafel pathway requires overcoming steric hindrance and disrupting stable electron filling states, making it challenging to proceed. This study finally employed constant potential calculations, which approximate experimental situations. The results indicated that the ΔGH* value at pH = 0 is 0.056 eV for RuS2/VBi-BiTeBr, validating the rationality of the traditional Computational Hydrogen Electrode (CHE) method for performance evaluation in this system. This work provides a reference for the research of new HER catalysts.

14.
Nanoscale ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39072435

RESUMO

Maximizing platinum's atomic utilization and understanding the anchoring mechanism between platinum moieties and their supports are crucial for the hydrogen evolution reaction (HER). Using density functional theory, we investigate the catalyst of a Pt monolayer on the two-dimensional Mo2TiC2 substrate (PtML/Mo2TiC2) for the reaction. This Pt monolayer shows a Pt(111)-like pattern, with its Pt-Pt bond elongated by about 0.1 Å compared to Pt(111); charge transfer from Mo2TiC2 to the Pt monolayer leads to significant charge accumulation on Pt. This substantial monolayer metal-support interaction optimizes hydrogen adsorption toward optimal HER activity under both constant charge and potential conditions, making PtML/Mo2TiC2 a promising HER catalyst. Detailed studies reveal that the dominant Volmer-Tafel mechanism in the HER occurs on the 1 monolayer hydrogen-covered PtML/Mo2TiC2 surface. The surface Pourbaix diagram identifies this as the stable surface termination under the electrochemical reaction conditions. These findings provide insights into designing stable, efficient, and low platinum-loaded HER catalysts.

15.
J Agric Food Chem ; 72(22): 12415-12424, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38779960

RESUMO

A series of novel 2-Ar-1,2,3-triazole derivatives were designed and synthesized based on our previously discovered active compound 6d against Rhizoctonia solani. Most of these compounds exhibited good antifungal activity against R. solani at a concentration of 25 µg/mL. Based on the results of biological activity, we established a three-dimensional quantitative structure-activity relationship (3D-QSAR) model that guided the synthesis of compound 7y. Compound 7y exhibited superior activity against R. solani (EC50 = 0.47 µg/mL) compared to the positive controls hymexazol (EC50 = 12.80 µg/mL) and tebuconazole (EC50 = 0.87 µg/mL). Furthermore, compound 7y demonstrated better protective activity than the aforementioned two commercial fungicides in both detached leaf assays and greenhouse experiments, achieving 56.21% and 65.75% protective efficacy, respectively, at a concentration of 100 µg/mL. The ergosterol content was determined and molecular docking was performed to explore the mechanism of these active molecules. DFT calculation and MEP analysis were performed to illustrate the results of this study. These results suggest that compound 7y could serve as a novel 2-Ar-1,2,3-triazole lead compound for controlling R. solani.


Assuntos
Desenho de Fármacos , Fungicidas Industriais , Simulação de Acoplamento Molecular , Doenças das Plantas , Relação Quantitativa Estrutura-Atividade , Rhizoctonia , Triazóis , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Fungicidas Industriais/síntese química , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , Rhizoctonia/efeitos dos fármacos , Rhizoctonia/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Estrutura Molecular , Hidrazinas/química , Hidrazinas/farmacologia
16.
J Phys Chem Lett ; 15(10): 2815-2824, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38441004

RESUMO

Understanding the structural evolution of single-atom catalysts (SACs) in catalytic reactions is crucial for unraveling their catalytic mechanisms. In this study, we utilize density functional theory calculations to delve into the active phase evolution and the oxygen reduction reaction (ORR) mechanism of tungsten semicarbide-based transition metal SACs (TM1/W2C). The stable crystal phases and optimal surface exposures of W2C are identified by using ab initio atomistic thermodynamics simulations. Focusing on the W-terminated (001) surface, we screen 13 stable TM1/W2C variants, ultimately selecting Pt1/W2C(001) as our primary model. The surface Pourbaix diagram, mapped for this model under ORR conditions, reveals dynamic Pt1 migration on the surface, triggered by surface oxidation. This discovery suggests a novel single-atom evolution pathway. Remarkably, this single-atom migration behavior is also discerned in seven other group VIII SACs, enhancing both their catalytic activity and their stability. Our findings offer insights into the evolution of active phases in SACs, considering substrate structural arrangement, single-atom incorporation, and self-optimization of catalysts under various conditions.

17.
ACS Appl Mater Interfaces ; 16(17): 22025-22034, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634322

RESUMO

Manipulation of selectivity in the catalytic electrochemical carbon dioxide reduction reaction (eCO2RR) poses significant challenges due to inevitable structure reconstruction. One approach is to develop effective strategies for controlling reaction pathways to gain a deeper understanding of mechanisms in robust CO2RR systems. In this work, by precise introduction of 1,10-phenanthroline as a bidentate ligand modulator, the electronic property of the copper site was effectively regulated, thereby directing selectivity switch. By modification of [Cu3(btec)(OH)2]n, the use of [Cu2(btec)(phen)2]n·(H2O)n achieved the selectivity switch from ethylene (faradaic efficiency (FE) = 41%, FEC2+ = 67%) to methane (FECH4 = 69%). Various in situ spectroscopic characterizations revealed that [Cu2(btec)(phen)2]n·(H2O)n promoted the hydrogenation of *CO intermediates, leading to methane generation instead of dimerization to form C2+ products. Acting as a delocalized π-conjugation scaffold, 1,10-phenanthroline in [Cu2(btec)(phen)2]n·(H2O)n helps stabilize Cuδ+. This work presents a novel approach to regulate the coordination environment of active sites with the aim of selectively modulating the CO2RR.

18.
Nanoscale ; 16(6): 2868-2876, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38235504

RESUMO

The design of highly efficient and robust platinum-based electrocatalysts is pivotal for proton exchange membrane fuel cells (PEMFC). One of the long-standing issues for PEMFC is the rapid deactivation of the catalyst under working conditions. Here, we report a simple synthesis strategy for ultrafine PtCo alloy nanoparticles loaded on a unique carbon support derived from a zeolitic imidazolate framework-67 (ZIF-67) and Ketjen Black (KB) composite, exhibiting a remarkable catalytic performance toward the oxygen reduction reaction (ORR) and PEMFC. Benefitting from the N-doping and wide pore size distribution of the composite carbon supports, the growth of PtCo nanoparticles can be evenly restricted, leading to a uniform distribution. The Pt-integrated catalyst delivers an outstanding electrochemical performance with a mass activity that is 8.6 times higher than that of the commercial Pt/C catalyst. Impressively, the accelerated durability test (ADT) demonstrates that the hybrid carbon support can significantly enhance the durability. Theoretical simulations highlight the synergistic contribution between the supports and the PtCo nanoparticles. Moreover, hydrogen-oxygen fuel cells assembled with the catalyst exhibited a high power density of 1.83 W cm-2 at 4 A cm-2. These results provide a new opportunity to design advanced catalysts for PEMFC.

19.
Nat Commun ; 15(1): 3416, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649713

RESUMO

In-depth comprehension and modulation of the electronic structure of the active metal sites is crucial to enhance their intrinsic activity of electrocatalytic oxygen evolution reaction (OER) toward anion exchange membrane water electrolyzers (AEMWEs). Here, we elaborate a series of amorphous metal oxide catalysts (FeCrOx, CoCrOx and NiCrOx) with high performance AEMWEs by high-valent chromium dopant. We discover that the positive effect of the transition from low to high valence of the Co site on the adsorption energy of the intermediate and the lower oxidation barrier is the key factor for its increased activity by synchrotron radiation in-situ techniques. Particularly, the CoCrOx anode catalyst achieves the high current density of 1.5 A cm-2 at 2.1 V and maintains for over 120 h with attenuation less than 4.9 mV h-1 in AEMWE testing. Such exceptional performance demonstrates a promising prospect for industrial application and providing general guidelines for the design of high-efficiency AEMWEs systems.

20.
Nanoscale ; 15(25): 10661-10666, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37314098

RESUMO

The development of oxygen evolution reaction (OER) catalysts with high activity and controllability is crucial for clean energy conversion and storage but remains a challenge. Here, based on first-principles calculations, we propose to utilize spin crossover (SCO) in two-dimensional (2D) metal-organic frameworks (MOFs) to achieve reversible control of OER catalytic activity. The theoretical design of a 2D square lattice MOF with Co as nodes and tetrakis-substituted cyanimino squaric acid (TCSA) as ligands, which transforms between the high spin (HS) and the low spin (LS) state by applying an external strain (∼2%), confirms our proposal. In particular, the HS-LS spin state transition of Co(TCSA) considerably regulates the adsorption strength of the key intermediate HO* in the OER process, resulting in a significant reduction of the overpotential from 0.62 V in the HS state to 0.32 V in the LS state, thus realizing a reversible switch for the activity of the OER. Moreover, the high activity of the LS state is confirmed by microkinetic and constant potential method simulations.


Assuntos
Estruturas Metalorgânicas , Adsorção , Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA