Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
BMC Biol ; 21(1): 43, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36829148

RESUMO

BACKGROUND: Undernourishment in utero has deleterious effects on the metabolism of offspring, but the mechanism of the transgenerational transmission of metabolic disorders is not well known. In the present study, we found that undernourishment in utero resulted in metabolic disorders of female F1 and F2 in mouse model. RESULTS: Undernutrition in utero induced metabolic disorders of F1 females, which was transmitted to F2 females. The global methylation in oocytes of F1 exposed to undernutrition in utero was decreased compared with the control. KEGG analysis showed that genes with differential methylation regions (DMRs) in promoters were significantly enriched in metabolic pathways. The altered methylation of some DMRs in F1 oocytes located at the promoters of metabolic-related genes were partially observed in F2 tissues, and the expressions of these genes were also changed. Meanwhile, the abnormal DNA methylation of the validated DMRs in F1 oocytes was also observed in F2 oocytes. CONCLUSIONS: These results indicate that DNA methylation may mediate the transgenerational inheritance of metabolic disorders induced by undernourishment in utero via female germline.


Assuntos
Desnutrição , Doenças Metabólicas , Camundongos , Animais , Feminino , Epigênese Genética , Metilação de DNA , Oócitos
2.
J Pineal Res ; 74(2): e12846, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36428267

RESUMO

With the rapid change of people's lifestyle, more childbearing couples live with irregular schedules (i.e., staying up late) and suffer from decreased fertility and abortion, which can be caused by luteal phase defect (LPD). We used continuous light-exposed mice as a model to observe whether continuous light exposure may affect luteinization and luteal function. We showed that the level of progesterone in serum reduced (p < .001), the number of corpus luteum (CL) decreased (p < .01), and the expressions of luteinization-related genes (Lhcgr, Star, Ptgfr, and Runx2), clock genes (Clock and Per1), and Mt1 were downregulated (p < .05) in the ovaries of mice exposed to continuous light, suggesting that continuous light exposure induces defects in luteinization and luteal functions. Strikingly, injection of melatonin (3 mg/kg) could improve luteal functions in continuous light-exposed mice. Moreover, we found that, after 2 h of hCG injection, the level of pERK1/2 in the ovary decreased in the continuous light group, but increased in the melatonin administration group, suggesting that melatonin can improve LPD caused by continuous light exposure through activating the ERK1/2 pathway. In summary, our data demonstrate that continuous light exposure affects ovary luteinization and luteal function, which can be rescued by melatonin.


Assuntos
Melatonina , Ovário , Feminino , Gravidez , Camundongos , Animais , Ovário/metabolismo , Camundongos Endogâmicos ICR , Melatonina/farmacologia , Melatonina/metabolismo , Corpo Lúteo/metabolismo , Progesterona/metabolismo , Luteinização
3.
J Cell Physiol ; 236(7): 4944-4953, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33368268

RESUMO

Obesity causes many reproductive dysfunctions such as reduced conception, infertility, and early pregnancy loss, and this is largely due to the negative effects of obesity on oocyte and embryo quality. In the present study, we employed single-cell RNA transcriptome sequencing to investigate the potential causes for the maternal obesity effects on mouse embryos. Our results showed that the 4-cell and morula/blastocyst rates were all significantly decreased during embryo development in obese mice. Genome-wide analysis indicated that obesity altered the expression of more than 1100 genes in 2-cell embryos, including the genes which were related to the p53 signaling pathway and apoptosis. Further analysis showed that the expression of 47 genes related to DNA damage was changed, and a positive γH2A signal and the altered expression of Rad51 and Tex15 were observed in the obese embryos. Obesity also affected histone methylation, shown by the decrease of the H3K4-me2 level. Besides this, we observed the occurrence of autophagy and apoptosis in the embryos of obese mice. There were 42 genes that were related to autophagy/apoptosis that showed aberrant expression, and the positive LC3 signal and the decrease of Clec16a, Rraga, and Atg10 level were also observed. In summary, our study suggested that obesity affected early embryonic development by inducing DNA damage, aberrant histone methylation, and autophagy levels in mice.


Assuntos
Autofagia/fisiologia , Metilação de DNA/genética , Reparo do DNA/genética , Desenvolvimento Embrionário/fisiologia , Obesidade Materna/patologia , Animais , Apoptose/fisiologia , Blastocisto/fisiologia , Proteínas de Ciclo Celular/biossíntese , Desenvolvimento Embrionário/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Oócitos/citologia , Gravidez , Rad51 Recombinase/biossíntese , Análise de Célula Única , Transcriptoma
4.
Hum Mol Genet ; 28(20): 3422-3430, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31384951

RESUMO

Germ cell-derived genomic structure variants not only drive the evolution of species but also induce developmental defects in offspring. The genomic structure variants have different types, but most of them are originated from DNA double-strand breaks (DSBs). It is still not well known whether DNA DSBs exist in adult mammalian oocytes and how the growing and fully grown oocytes repair their DNA DSBs induced by endogenous or exogenous factors. In this study, we detected the endogenous DNA DSBs in the growing and fully grown mouse oocytes and found that the DNA DSBs mainly localized at the centromere-adjacent regions, which are also copy number variation hotspots. When the exogenous DNA DSBs were introduced by Etoposide, we found that Rad51-mediated homologous recombination (HR) was used to repair the broken DNA. However, the HR repair caused the chromatin intertwined and impaired the homologous chromosome segregation in oocytes. Although we had not detected the indication about HR repair of endogenous centromere-adjacent DNA DSBs, we found that Rad52 and RNA:DNA hybrids colocalized with these DNA DSBs, indicating that a Rad52-dependent DNA repair might exist in oocytes. In summary, our results not only demonstrated an association between endogenous DNA DSBs with genomic structure variants but also revealed one specific DNA DSB repair manner in oocytes.


Assuntos
Segregação de Cromossomos/fisiologia , Quebras de DNA de Cadeia Dupla , Reparo do DNA/fisiologia , Meiose/fisiologia , Oócitos/metabolismo , Animais , Segregação de Cromossomos/genética , Reparo do DNA/genética , Feminino , Infertilidade Feminina/genética , Masculino , Meiose/genética , Camundongos
5.
Biol Reprod ; 105(5): 1234-1245, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34467391

RESUMO

Within the development of ovarian follicle, in addition to cell proliferation and differentiation, sophisticated cell-cell cross talks are established among follicular somatic cells such as granulosa cells (GCs) and theca cells. To systematically reveal the cell differentiation and signal transductions in follicular somatic cells, we collected the mouse follicular somatic cells from secondary to ovulatory stage, and analyzed the single cell transcriptomes. Having data filtered and screened, we found 6883 high variable genes in 4888 single cells. Then follicular somatic cells were clustered into 26 cell clusters, including 18 GC clusters, 4 theca endocrine cell (TEC) clusters, and 4 other somatic cell clusters, which include immune cells and Acta2 positive theca externa cells. From our data, we found there was metabolic reprogramming happened during GC differentiation. We also found both Cyp19a1 and Cyp11a1 could be expressed in TECs. We analyzed the expression patterns of genes associated with cell-cell interactions such as steroid hormone receptor genes, insulin signaling genes, and cytokine/transformation growth factor beta associated genes in all cell clusters. Lastly, we clustered the highly variable genes into 300 gene clusters, which could be used to search new genes involved in follicle development. These transcriptomes of follicular somatic cells provide us potential clues to reveal how mammals regulating follicle development and could help us find targets to improve oocyte quality for women with low fertility.


Assuntos
Comunicação Celular/genética , Expressão Gênica/fisiologia , Folículo Ovariano/metabolismo , Transdução de Sinais , Transcriptoma , Animais , Feminino , Camundongos , Análise de Sequência de RNA , Análise de Célula Única
6.
J Pineal Res ; 71(1): e12742, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33960014

RESUMO

Melatonin is a highly conserved molecule that regulates day/night rhythms; it is associated with sleep improvement, reactive oxygen species (ROS) scavenging, anti-aging effects, and seasonal and circadian rhythms and has been a hot topic of research for decades. Using single-cell RNA sequencing, a recent study describes a single-cell transcriptome atlas for the rat pineal gland. Based on a more comprehensive analysis of the retrieved data (Mays et al., PLoS One, 2018, 13, e0205883), results from the current study unveiled the underappreciated gene regulatory network behind different cell populations in the pineal gland. More importantly, our study here characterized, for the first time, the day/night activation of autophagy flux in the rat pineal gland, indicating a potential role of autophagy in regulating melatonin synthesis in the rat pineal gland. These findings emphasized a hypothetical role of day/night autophagy in linking the biological clock with melatonin synthesis. Furthermore, ultrastructure analysis of pinealocytes provided fascinating insights into differences in their intracellular structure between daytime and nighttime. In addition, we also provide a preliminary description of cell-cell communication in the rat pineal gland. In summary, the current study unveils the day/night regulation of autophagy in the rat pineal gland, raising a potential role of autophagy in day/night-regulated melatonin synthesis.


Assuntos
Autofagia/fisiologia , Ritmo Circadiano/fisiologia , Melatonina/biossíntese , Glândula Pineal/metabolismo , Animais , Ratos , Ratos Sprague-Dawley
7.
Biochem Biophys Res Commun ; 527(4): 1043-1049, 2020 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-32439172

RESUMO

During oocyte meiosis, mitochondria usually surround spindle to meet the energy demand of spindle migration and chromosome segregation. Therefore, the mitochondrion surrounding spindle is widely accepted as an important indicator to demonstrate the mitochondrial function in oocyte studies. However, the role of mitochondria surrounding spindle in oocyte quality is not exactly addressed. Mitofusin-2 (MFN2) is a mitochondrial outer membrane GTPase that mediates mitochondrial clustering and fusion. Here, we increased the mitochondria surrounding spindle by overexpression of MFN2 in mouse oocytes. Results indicate that the increase of mitochondria surrounding spindle has little effect on germinal vesicle breakdown (GVBD), spindle migration, mitochondrial membrane potential (MMP), reactive oxygen species (ROS) production and Endoplasmic reticulum (ER) distribution, while blocks chromosome segregation, destroys the spindle, and finally causes most of the oocytes to arrest at metaphase I stage. Collectively, our results demonstrate the mitochondria surrounding spindle is precisely regulated during oocyte maturation, while too much of it may cause abnormal oocyte meiosis. Therefore, although mitochondrion surrounding spindle is a typical biological event during oocyte maturation, utilizing it to demonstrate the mitochondrial function and oocyte quality should be much careful.


Assuntos
Metáfase , Mitocôndrias/metabolismo , Oócitos/citologia , Fuso Acromático/metabolismo , Animais , Células Cultivadas , Feminino , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Células HeLa , Humanos , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Endogâmicos ICR , Mitocôndrias/genética , Oócitos/metabolismo , Oogênese , Espécies Reativas de Oxigênio/metabolismo , Fuso Acromático/genética , Regulação para Cima
8.
J Med Genet ; 56(3): 156-163, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30514739

RESUMO

BACKGROUND: The human oocyte transmits one set of haploid genome into female pronucleus (FPN) while discards the remaining genome into the first polar body (PB1) and the second polar body (PB2). The FPN genome carries an assembly of maternal and paternal genome that resulted from homologous recombination during the prophase of the first meiosis. However, how parental genome has been shuffled and transmitted is difficult to assess by analysing only the progeny's genome. OBJECTIVE: To assess meiotic chromatid recombination and segregation in human oocytes. METHODS: Single cell genome sequencing data of PB1, PB2 and FPN that originated from the same oocyte were used to analyse the human oocyte homologous chromosome interaction and segregation. To analyse whether chromosomes were non-randomly segregated into polar bodies or pronucleus, we analysed the ratio of crossover in PB2 and FPN, and constructed a model to detect the randomness of oocyte chromosome segregation. RESULTS: We found that during oocyte meiosis, in addition to homologous chromosome recombination, there was also a genome conversion phenomenon which generated a non-reciprocal genetic information transmission between homologous chromosomes. We also inferred that during meiosis, DNA breaks and repairs frequently occurred at centromere-adjacent regions. From our data we did not find obvious evidence supporting the crossover number-based or SNP-based meiotic drive in oocytes. CONCLUSION: In addition to the crossover-based recombination, during human oocyte meiosis, a direct genome conversion between homologous chromosomes is used in some oocytes. Our findings are helpful in understanding the specific features of meiotic chromatid recombination and segregation in human oocytes.


Assuntos
Cromátides/genética , Segregação de Cromossomos , Genoma Humano , Genômica , Recombinação Homóloga , Meiose/genética , Centrômero , Feminino , Genômica/métodos , Genótipo , Humanos , Oócitos/metabolismo , Polimorfismo de Nucleotídeo Único , Análise de Célula Única
9.
J Cell Physiol ; 234(5): 6220-6229, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30317565

RESUMO

Benzo[ghi]perylene (B[ghi]P) is a polycyclic aromatic hydrocarbon widely found in haze. Long-term exposure to humans or animals can cause serious damage to the respiratory system. Melatonin is an endogenous natural hormone synthesized and released by the pineal gland. In this study, we investigated the effects of melatonin on in vitro cultured B[ghi]P-exposed mouse oocytes and the protective roles of melatonin. Our data indicate that B[ghi]P exposure leads to meiotic maturation arrest and reduced ability of sperm binding and parthenogenetic activation. Also, B[ghi]P exposure disrupts actin filament dynamics, spindle assembly, and kinetochore-microtubule attachment stability, which results in oocyte aneuploidy. Simultaneously, B[ghi]P exposure disturbs the distribution of mitochondria, increases the level of oxidative stress, and induces apoptosis of oocytes. Whereas all of these toxic effects of B[ghi]P can be restored after melatonin supplement. In conclusion, our findings validate that melatonin has a certain protective effect on preventing the reduced oocyte quality caused by B[ghi]P exposure during meiotic maturation in mouse oocytes.


Assuntos
Antioxidantes/farmacologia , Melatonina/farmacologia , Oócitos/efeitos dos fármacos , Perileno/análogos & derivados , Animais , Feminino , Camundongos , Camundongos Endogâmicos ICR , Estresse Oxidativo/efeitos dos fármacos , Perileno/toxicidade
10.
Reproduction ; 157(6): 511-523, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30884466

RESUMO

It is demonstrated that repeated superovulation has deleterious effects on mouse ovaries and cumulus cells. However, little is known about the effects of repeated superovulation on early embryos. Epigenetic reprogramming is an important event in early embryonic development and could be easily disrupted by the environment. Thus, we speculated that multiple superovulations may have adverse effects on histone modifications in the early embryos. Female CD1 mice were randomly divided into four groups: (a) spontaneous estrus cycle (R0); (b) with once superovulation (R1); (c) with three times superovulation at a 7-day interval (R3) and (d) with five times superovulation at a 7-day interval (R5). We found that repeated superovulation remarkably decreased the fertilization rate. With the increase of superovulation times, the rate of early embryo development was decreased. The expression of Oct4, Sox2 and Nanog was also affected by superovulation in blastocysts. The immunofluorescence results showed that the acetylation level of histone 4 at lysine 12 (H4K12ac) was significantly reduced by repeated superovulation in mouse early embryos (P < 0.01). Acetylation level of histone 4 at lysine 16 (H4K16ac) was also significantly reduced in pronuclei and blastocyst along with the increase of superovulation times (P < 0.01). H3K9me2 and H3K27me3 were significantly increased in four-cell embryos and blastocysts. We further found that repeated superovulation treatment increased the mRNA level of histone deacetylases Hdac1, Hdac2 and histone methyltransferase G9a, but decreased the expression level of histone demethylase-encoding genes Kdm6a and Kdm6b in early embryos. In a word, multiple superovulations alter histone modifications in early embryos.


Assuntos
Blastocisto/fisiologia , Desenvolvimento Embrionário , Histonas/química , Processamento de Proteína Pós-Traducional , Superovulação/fisiologia , Acetilação , Animais , Blastocisto/citologia , Metilação de DNA , Técnicas de Cultura Embrionária , Epigênese Genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Camundongos , Gravidez
11.
Hum Reprod ; 33(3): 474-481, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29377995

RESUMO

STUDY QUESTION: What are the effects of high-glucose concentrations on DNA methylation of human oocytes? SUMMARY ANSWER: High-glucose concentrations altered DNA methylation levels of Peg3 and Adiponectin in human in vitro maturation oocytes. WHAT IS KNOWN ALREADY: Maternal diabetes has a detrimental influence on oocyte quality including epigenetic modifications, as shown in non-human mammalian species. STUDY DESIGN, SIZE, DURATION: Immature metaphase I (MI) stage oocytes of good quality were retrieved from patients who had normal ovarian potential and who underwent ICSI in the Reproductive Medicine Center of People's Hospital of Zhengzhou University. MI oocytes were cultured in medium with different glucose concentrations (control, 10 mM and 15 mM) in vitro and 48 h later, oocytes with first polar body extrusion were collected to check the DNA methylation levels. PARTICIPANTS/MATERIALS, SETTING, METHODS: MI oocytes underwent in vitro maturation (IVM) at 37°C with 5% mixed gas for 48 h. Then the mature oocytes were treated with bisulfite buffer. Target sequences were amplified using nested or half-nested PCR and the DNA methylation status was tested using combined bisulfite restriction analysis (COBRA) and bisulfite sequencing (BS). MAIN RESULTS AND THE ROLE OF CHANCE: High-glucose concentrations significantly decreased the first polar body extrusion rate. Compared to controls, the DNA methylation levels of Peg3 in human IVM oocytes were significantly higher in 10 mM (P < 0.001) and 15 mM (P < 0.001) concentrations of glucose. But the DNA methylation level of H19 was not affected by high-glucose concentrations in human IVM oocytes. We also found that there was a decrease in DNA methylation levels in the promoter of adiponectin in human IVM oocytes between controls and oocytes exposed to 10 mM glucose (P = 0.028). LARGE SCALE DATA: N/A. LIMITATIONS REASONS FOR CAUTION: It is not clear whether the alterations are beneficial or not for the embryo development and offspring health. The effects of high-glucose concentrations on the whole process of oocyte maturation are still not elucidated. Another issue is that the number of oocytes used in this study was limited. WIDER IMPLICATIONS OF THE FINDINGS: This is the first time that the effects of high-glucose concentration on DNA methylation of human oocytes have been elucidated. Our result indicates that in humans, the high risk of chronic diseases in offspring from diabetic mothers may originate from abnormal DNA modifications in oocytes. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the fund of National Natural Science Foundation of China (81401198) and Doctor Foundation of Qingdao Agricultural University (1116008).The authors declare that there are no potential conflicts of interest relevant to this article.


Assuntos
Adiponectina/genética , Metilação de DNA/efeitos dos fármacos , Glucose/administração & dosagem , Fatores de Transcrição Kruppel-Like/genética , Oócitos/efeitos dos fármacos , Adiponectina/metabolismo , Relação Dose-Resposta a Droga , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Humanos , Técnicas de Maturação in Vitro de Oócitos , Fatores de Transcrição Kruppel-Like/metabolismo , Oócitos/metabolismo
12.
Proc Natl Acad Sci U S A ; 110(32): 13038-43, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23878233

RESUMO

In animals, mtDNA is always transmitted through the female and this is termed "maternal inheritance." Recently, autophagy was reported to be involved in maternal inheritance by elimination of paternal mitochondria and mtDNA in Caenorhabditis elegans; moreover, by immunofluorescence, P62 and LC3 proteins were also found to colocalize to sperm mitochondria after fertilization in mice. Thus, it has been speculated that autophagy may be an evolutionary conserved mechanism for paternal mitochondrial elimination. However, by using two transgenic mouse strains, one bearing GFP-labeled autophagosomes and the other bearing red fluorescent protein-labeled mitochondria, we demonstrated that autophagy did not participate in the postfertilization elimination of sperm mitochondria in mice. Although P62 and LC3 proteins congregated to sperm mitochondria immediately after fertilization, sperm mitochondria were not engulfed and ultimately degraded in lysosomes until P62 and LC3 proteins disengaged from sperm mitochondria. Instead, sperm mitochondria unevenly distributed in blastomeres during cleavage and persisted in several cells until the morula stages. Furthermore, by using single sperm mtDNA PCR, we observed that most motile sperm that had reached the oviduct for fertilization had eliminated their mtDNA, leaving only vacuolar mitochondria. However, if sperm with remaining mtDNA entered the zygote, mtDNA was not eliminated and could be detected in newborn mice. Based on these results, we conclude that, in mice, maternal inheritance of mtDNA is not an active process of sperm mitochondrial and mtDNA elimination achieved through autophagy in early embryos, but may be a passive process as a result of prefertilization sperm mtDNA elimination and uneven mitochondrial distribution in embryos.


Assuntos
Autofagia/genética , DNA Mitocondrial/genética , Genes Mitocondriais/genética , Padrões de Herança/genética , Animais , Sequência de Bases , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Feminino , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Fagossomos/metabolismo , Homologia de Sequência do Ácido Nucleico , Espermatozoides/citologia , Espermatozoides/metabolismo , Fator de Transcrição TFIIH , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Int Immunopharmacol ; 138: 112570, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38971105

RESUMO

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) shows promising therapeutic potential in cancer treatment as it is able to trigger extrinsic apoptotic pathways by binding to the cognate death receptor, causing broad-spectrum apoptosis in cancer cells with negligible toxicity to normal cells. However, the majority of cancers display resistance to TRAIL, limiting its clinical utility. Overcoming resistance to TRAIL therapies remains a challenge in the development of effective anti-cancer strategies. To address the limitations of TRAIL therapy, a viable alternative approach involves combining TRAIL with more potent drugs compared to monotherapy. This combination strategy aims to induce synergistic effects or sensitize drug-resistant cancer cells. This review provides an overview of relevant modalities of TRAIL combination therapy, highlighting different drug classes. The findings demonstrate that combining TRAIL with other agents can effectively counteract resistance observed with TRAIL therapies in cancer. These findings lay a foundation for future advancements in TRAIL-based therapies for treating various cancers.

14.
Elife ; 122024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747713

RESUMO

During mammalian oocyte meiosis, spindle migration and asymmetric cytokinesis are unique steps for the successful polar body extrusion. The asymmetry defects of oocytes will lead to the failure of fertilization and embryo implantation. In present study, we reported that an actin nucleating factor Formin-like 2 (FMNL2) played critical roles in the regulation of spindle migration and organelle distribution in mouse and porcine oocytes. Our results showed that FMNL2 mainly localized at the oocyte cortex and periphery of spindle. Depletion of FMNL2 led to the failure of polar body extrusion and large polar bodies in oocytes. Live-cell imaging revealed that the spindle failed to migrate to the oocyte cortex, which caused polar body formation defects, and this might be due to the decreased polymerization of cytoplasmic actin by FMNL2 depletion in the oocytes of both mice and pigs. Furthermore, mass spectrometry analysis indicated that FMNL2 was associated with mitochondria and endoplasmic reticulum (ER)-related proteins, and FMNL2 depletion disrupted the function and distribution of mitochondria and ER, showing with decreased mitochondrial membrane potential and the occurrence of ER stress. Microinjecting Fmnl2-EGFP mRNA into FMNL2-depleted oocytes significantly rescued these defects. Thus, our results indicate that FMNL2 is essential for the actin assembly, which further involves into meiotic spindle migration and ER/mitochondria functions in mammalian oocytes.


Assuntos
Actinas , Retículo Endoplasmático , Forminas , Meiose , Mitocôndrias , Oócitos , Animais , Retículo Endoplasmático/metabolismo , Oócitos/metabolismo , Forminas/metabolismo , Forminas/genética , Mitocôndrias/metabolismo , Camundongos , Actinas/metabolismo , Suínos , Feminino , Fuso Acromático/metabolismo
15.
Biol Reprod ; 88(5): 117, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23515675

RESUMO

Maternal diabetes has adverse effects not only on oocyte quality but also on embryo development. However, it is still unknown whether the DNA imprinting in oocytes is altered by diabetes. By using streptozotocin (STZ)-induced and nonobese diabetic (NOD) mouse models we investigated the effect of maternal diabetes on DNA methylation of imprinted genes in oocytes. Mice which were judged as being diabetic 4 days after STZ injection were used for experiments. In superovulated oocytes of diabetic mice, the methylation pattern of Peg3 differential methylation regions (DMR) was affected in a time-dependent manner, and evident demethylation was observed on Day 35 after STZ injection. The expression level of DNA methyltransferases (DNMTs) was also decreased in a time-dependent manner in diabetic oocytes. However, the methylation patterns of H19 and Snrpn DMRs were not significantly altered by maternal diabetes, although there were some changes in Snrpn. In NOD mice, the methylation pattern of Peg3 was similar to that of STZ-induced mice. Embryo development was adversely affected by maternal diabetes; however, no evident imprinting abnormality was observed in oocytes from female offspring derived from a diabetic mother. These results indicate that maternal diabetes has adverse effects on DNA methylation of maternally imprinted gene Peg3 in oocytes of a diabetic female in a time-dependent manner, but methylation in offspring's oocytes is normal.


Assuntos
Metilação de DNA , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Expressão Gênica , Oócitos/metabolismo , Animais , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 1/genética , Desenvolvimento Embrionário/genética , Feminino , Impressão Genômica , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Camundongos Endogâmicos NOD , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas Centrais de snRNP
16.
Reprod Biol Endocrinol ; 11: 119, 2013 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-24378208

RESUMO

BACKGROUND: Maternal diabetes mellitus not only has severe deleterious effects on fetal development, but also it affects transmission to the next generation. However, the underlying mechanisms for these effects are still not clear. METHODS: We investigated the methylation patterns and expressions of the imprinted genes Peg3, Snrpn, and H19 in mid-gestational placental tissues and on the whole fetus utilizing the streptozotocin (STZ)-induced hyperglycemic mouse model for quantitative analysis of methylation by PCR and quantitative real-time PCR. The protein expression of Peg3 was evaluated by Western blot. RESULTS: We found that the expression of H19 was significantly increased, while the expression of Peg3 was significantly decreased in dpc10.5 placentas of diabetic mice. We further found that the methylation level of Peg3 was increased and that of H19 was reduced in dpc10.5 placentas of diabetic mice. When pronuclear embryos of normal females were transferred to normal/diabetic (NN/ND) pseudopregnant females, the methylation and expression of Peg3 in placentas was also clearly altered in the ND group compared to the NN group. However, when the pronuclear embryos of diabetic female were transferred to normal pesudopregnant female mice (DN), the methylation and expression of Peg3 and H19 in dpc10.5 placentas was similar between the two groups. CONCLUSIONS: We suggest that the effects of maternal diabetes on imprinted genes may primarily be caused by the adverse uterus environment.


Assuntos
Diabetes Mellitus/genética , Desenvolvimento Fetal/genética , Impressão Genômica , Gravidez em Diabéticas/genética , Útero/metabolismo , Animais , Western Blotting , Metilação de DNA , Feminino , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Placenta/metabolismo , Gravidez , Gravidez em Diabéticas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas Centrais de snRNP/genética , Proteínas Centrais de snRNP/metabolismo
17.
J Chem Ecol ; 39(7): 1036-44, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23797931

RESUMO

Mycorrhizas play a vital role in soil fertility, plant nutrition, and resistance to environmental stresses. However, mycorrhizal effects on plant resistance to herbivorous insects and the related mechanisms are poorly understood. This study evaluated effects of root colonization of tomato (Solanum lycopersicum Mill.) by arbuscular mycorrhizal fungi (AMF) Glomus mosseae on plant defense responses against a chewing caterpillar Helicoverpa arimigera. Mycorrhizal inoculation negatively affected larval performance. Real time RT-PCR analyses showed that mycorrhizal inoculation itself did not induce transcripts of most genes tested. However, insect feeding on AMF pre-inoculated plants resulted in much stronger defense response induction of four defense-related genes LOXD, AOC, PI-I, and PI-II in the leaves of tomato plants relative to non-inoculated plants. Four tomato genotypes: a wild-type (WT) plant, a jasmonic acid (JA) biosynthesis mutant (spr2), a JA-signaling perception mutant (jai1), and a JA-overexpressing 35S::PS plant were used to determine the role of the JA pathway in AMF-primed defense. Insect feeding on mycorrhizal 35S::PS plants led to higher induction of defense-related genes relative to WT plants. However, insect feeding on mycorrhizal spr2 and jai1 mutant plants did not induce transcripts of these genes. Bioassays showed that mycorrhizal inoculation on spr2 and jai1 mutants did not change plant resistance against H. arimigera. These results indicates that mycorrhizal colonization could prime systemic defense responses in tomato upon herbivore attack, and that the JA pathway is involved in defense priming by AMF.


Assuntos
Herbivoria , Mariposas , Micorrizas/fisiologia , Imunidade Vegetal , Transdução de Sinais/fisiologia , Solanum lycopersicum/microbiologia , Animais , Ciclopentanos/metabolismo , Genes de Plantas , Larva , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Oxilipinas/metabolismo , Folhas de Planta/metabolismo , Simbiose
18.
Autophagy ; 19(1): 363-364, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35574946

RESUMO

Mitophagy is a process that selectively degrades mitochondria in cells, and it involves a series of signaling events. Our recent paper shows that the ectopic expression of SQSTM1 and its MAP1LC3B-binding domain (Binding) at the mitochondrial outer membrane, can directly cause mitophagy. To distinguish this mitophagy from others, we called it forced mitophagy. Further results show that the forced mitophagy can degrade half of the mitochondria and their DNA in HeLa cells and mouse embryos. Meanwhile, there are no apparent effects on mitochondrial membrane potential (MMP), reactive oxygen species (ROS), mitosis and embryo development. Thus, the forced mitophagy was examined to selectively degrade mitochondrial carryover in the nuclear donor embryos' mitochondria by pre-labeling with Binding before mitochondrial replacement therapy (MRT). The results show that the forced mitophagy can reduce mitochondrial carryover from an average of 4% to 0.09% compared to the controls in mouse embryos and tissues. In addition, the offspring from MRT mice show negligible effects on growth, reproduction, exercise and behavior. Furthermore, results from human tri-pronuclear embryos show that the forced mitophagy results in undetectable mitochondrial carryover in 77% of embryos following MRT. Therefore, forced mitophagy is efficient and safe for degrading mitochondrial carryover in MRT.


Assuntos
Terapia de Substituição Mitocondrial , Mitofagia , Camundongos , Humanos , Animais , Mitofagia/genética , Proteína Sequestossoma-1/metabolismo , Células HeLa , Autofagia , Mitocôndrias/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo
19.
Hum Reprod ; 27(4): 1016-24, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22313867

RESUMO

BACKGROUND: Sperm chromatin is highly condensed and relatively resistant to chemical and physical treatments. The purpose of this study was to explore the highest temperature that sperm can tolerate and still produce live offspring. METHODS: Mouse sperm were heated in a water bath at 50, 65, 80 or 95°C for 30 min before they were microinjected into mouse oocytes. Fertilization, embryo development and 1-cell embryo karyotypes were evaluated. Epigenetic reprogramming including DNA methylation and histone H3K4-trimethylation were evaluated by immunofluorescent staining. RESULTS: The ability of mouse sperm to activate the egg after ICSI was heat sensitive; only 20% of eggs were activated by sperm that had been heated to 50°C and none was activated by sperm heated to 80°C. However, if eggs were activated artificially, mouse sperm subjected to 80°C for 30 min were able to produce live offspring, while 95°C treatment disabled sperm decondensation after ICSI. Once the heat-treated sperm nucleus had developed into a pronucleus, sperm chromatin was able to undergo normal active DNA demethylation and histone methylation. Aberrant chromosome rates increased from 16.3 to 100% when the temperature was raised from 50 to 95°C. CONCLUSIONS: Heat treatment destroys integrity of sperm chromatin in a temperature-dependent manner. Eighty degree Celsius was the highest temperature that mouse sperm could withstand and still produce live offspring.


Assuntos
Desenvolvimento Embrionário , Epigênese Genética , Temperatura Alta , Espermatozoides/fisiologia , Animais , Metilação de DNA , Transferência Embrionária , Feminino , Fertilização , Calefação , Histonas/metabolismo , Cariótipo , Masculino , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Gravidez , Injeções de Esperma Intracitoplásmicas , Interações Espermatozoide-Óvulo
20.
Nat Biomed Eng ; 6(4): 339-350, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35437313

RESUMO

Mitochondrial replacement therapy (MRT) has been used to prevent maternal transmission of disease-causing mutations in mitochondrial DNA (mtDNA). However, because MRT requires nuclear transfer, it carries the risk of mtDNA carryover and hence of the reversion of mtDNA to pathogenic levels owing to selective replication and genetic drift. Here we show in HeLa cells, mouse embryos and human embryos that mtDNA heteroplasmy can be reduced by pre-labelling the mitochondrial outer membrane of a donor zygote via microinjection with an mRNA coding for a transmembrane peptide fused to an autophagy receptor, to induce the degradation of the labelled mitochondria via forced mitophagy. Forced mitophagy reduced mtDNA carryover in newly reconstructed embryos after MRT, and had negligible effects on the growth curve, reproduction, exercise capacity and other behavioural characteristics of the offspring mice. The induction of forced mitophagy to degrade undesired donor mtDNA may increase the clinical feasibility of MRT and could be extended to other nuclear transfer techniques.


Assuntos
Terapia de Substituição Mitocondrial , Animais , DNA Mitocondrial/genética , Células HeLa , Heteroplasmia , Humanos , Camundongos , Mitocôndrias/genética , Terapia de Substituição Mitocondrial/métodos , Mitofagia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA