Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell Rep ; 43(1): 24, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38150036

RESUMO

KEY MESSAGE: Cold-tolerant QTL qCSS12-regulated 14 hub genes are involved in the chloroplastic biological processes and in the protein synthesis and degradation processes in japonica rice. Low temperature is a main constraint factor for rice growth and production. To better understand the regulatory mechanisms underlying the cold tolerance phenotype in rice, here, we selected a cold-sensitive nearly isogenic line (NIL) NIL(qcss12) as materials to identify hub genes that are mediated by the cold-tolerant locus qCSS12 through weighted gene co-expression network analysis (WGCNA). Fourteen cold-responsive genes were identified, of which, 6 are involved in regulating biological processes in chloroplasts, including the reported EF-Tu, Prk, and ChlD, and 8 are involved in the protein synthesis and degradation processes. Differential expression of these genes between NIL(qcss12) and its controls under cold stress may be responsible for qCSS12-mediated cold tolerance in japonica rice. Moreover, natural variations in 12 of these hub genes are highly correlated with the cold tolerance divergence in two rice subspecies. The results provide deep insights into a better understanding of the molecular basis of cold adaptation in rice and provide a theoretical basis for molecular breeding.


Assuntos
Oryza , Oryza/genética , Cloroplastos , Temperatura Baixa , Resposta ao Choque Frio/genética , Embaralhamento de DNA
2.
Life Sci ; 318: 121501, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36801213

RESUMO

AIMS: Taurohyodeoxycholic acid (THDCA), a natural 6α-hydroxylated bile acid, exhibits intestinal anti-inflammatory effects. This study aimed to explore the efficacy of THDCA on ulcerative colitis and to reveal its mechanisms of action. MAIN METHODS: Colitis was induced by intrarectal administration of trinitrobenzene sulfonic acid (TNBS) to mice. Mice in the treatment group were gavage THDCA (20, 40, and 80 mg/kg/day) or sulfasalazine (500 mg/kg/day) or azathioprine (10 mg/kg/day). The pathologic markers of colitis were comprehensively assessed. The levels of Th1-/Th2-/Th17-/Treg-related inflammatory cytokines and transcription factors were detected by ELISA, RT-PCR, and Western blotting. The balance of Th1/Th2 and Th17/Treg cells was analyzed by Flow cytometry. KEY FINDINGS: THDCA significantly alleviated colitis by improving the body weight, colon length, spleen weight, histological characteristics, and MPO activity of colitis mice. THDCA reduced the secretion of Th1-/Th17-related cytokines (IFN-γ, IL-12p70, IL-6, IL-17A, IL-21, IL-22, and TNF-α) and the expressions of transcription factors (T-bet, STAT4, RORγt, and STAT3), but increase the production of Th2-/Treg-related cytokines (IL-4, IL-10, and TGF-ß1) and the expressions of transcription factors (GATA3, STAT6, Foxp3, and Smad3) in the colon. Meanwhile, THDCA inhibited the expressions of IFN-γ, IL-17A, T-bet, and RORγt, but improved the expression of IL-4, IL-10, GATA3, and Foxp3 in the spleen. Furthermore, THDCA restored the proportion of Th1, Th2, Th17, and Treg cells, and balanced the Th1/Th2 and Th17/Treg immune response of colitis mice. SIGNIFICANCE: THDCA can alleviate TNBS-induced colitis via regulating Th1/Th2 and Th17/Treg balance, which may represent a promising treatment for patients with colitis.


Assuntos
Colite Ulcerativa , Colite , Camundongos , Animais , Colite Ulcerativa/patologia , Linfócitos T Reguladores , Interleucina-17 , Interleucina-10 , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Ácido Trinitrobenzenossulfônico , Interleucina-4/farmacologia , Colite/induzido quimicamente , Citocinas/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Células Th17
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA