Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.080
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nat Immunol ; 22(6): 781-793, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34031617

RESUMO

Multimodal T cell profiling can enable more precise characterization of elusive cell states underlying disease. Here, we integrated single-cell RNA and surface protein data from 500,089 memory T cells to define 31 cell states from 259 individuals in a Peruvian tuberculosis (TB) progression cohort. At immune steady state >4 years after infection and disease resolution, we found that, after accounting for significant effects of age, sex, season and genetic ancestry on T cell composition, a polyfunctional type 17 helper T (TH17) cell-like effector state was reduced in abundance and function in individuals who previously progressed from Mycobacterium tuberculosis (M.tb) infection to active TB disease. These cells are capable of responding to M.tb peptides. Deconvoluting this state-uniquely identifiable with multimodal analysis-from public data demonstrated that its depletion may precede and persist beyond active disease. Our study demonstrates the power of integrative multimodal single-cell profiling to define cell states relevant to disease and other traits.


Assuntos
Memória Imunológica , Mycobacterium tuberculosis/imunologia , Células Th17/imunologia , Tuberculose Pulmonar/imunologia , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Criança , Progressão da Doença , Feminino , Seguimentos , Predisposição Genética para Doença , Técnicas de Genotipagem , Humanos , Masculino , Pessoa de Meia-Idade , Mycobacterium tuberculosis/isolamento & purificação , Peru , RNA-Seq , Fatores Sexuais , Análise de Célula Única , Fatores Socioeconômicos , Tuberculose Pulmonar/sangue , Tuberculose Pulmonar/genética , Tuberculose Pulmonar/microbiologia , Adulto Jovem
2.
Immunity ; 54(10): 2305-2320.e11, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34508661

RESUMO

Langerhans cells (LCs) play a pivotal role in skin homeostasis, and the heterogeneity of LCs has long been considered. In this study, we have identified two steady-state (LC1 and LC2) and two activated LC subsets in the epidermis of human skin and in LCs derived from CD34+ hemopoietic stem cells (HSC-LCs) by utilizing single-cell RNA sequencing and mass cytometry. Analysis of HSC-LCs at multiple time-points during differentiation revealed that EGR1 and Notch signaling were among the top pathways regulating the bifurcation of LC1 and LC2. LC1 were characterized as classical LCs, mainly related to innate immunity and antigen processing. LC2 were similar to monocytes or myeloid dendritic cells, involving in immune responses and leukocyte activation. LC1 remained stable under inflammatory microenvironment, whereas LC2 were prone to being activated and demonstrated elevated expression of immuno-suppressive molecules. We revealed distinct human LC subsets that require different developmental regulation and orchestrate reciprocal functions.


Assuntos
Diferenciação Celular/imunologia , Células de Langerhans/citologia , Células de Langerhans/imunologia , Pele/citologia , Pele/imunologia , Apresentação de Antígeno/imunologia , Células-Tronco Hematopoéticas/imunologia , Humanos , Imunidade Inata/imunologia
3.
Mol Cell ; 82(15): 2900-2911.e7, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35905735

RESUMO

Proteogenomic identification of translated small open reading frames has revealed thousands of previously unannotated, largely uncharacterized microproteins, or polypeptides of less than 100 amino acids, and alternative proteins (alt-proteins) that are co-encoded with canonical proteins and are often larger. The subcellular localizations of microproteins and alt-proteins are generally unknown but can have significant implications for their functions. Proximity biotinylation is an attractive approach to define the protein composition of subcellular compartments in cells and in animals. Here, we developed a high-throughput technology to map unannotated microproteins and alt-proteins to subcellular localizations by proximity biotinylation with TurboID (MicroID). More than 150 microproteins and alt-proteins are associated with subnuclear organelles. One alt-protein, alt-LAMA3, localizes to the nucleolus and functions in pre-rRNA transcription. We applied MicroID in a mouse model, validating expression of a conserved nuclear microprotein, and establishing MicroID for discovery of microproteins and alt-proteins in vivo.


Assuntos
Peptídeos , Proteínas , Animais , Nucléolo Celular , Camundongos , Fases de Leitura Aberta , Peptídeos/genética , Proteínas/genética
4.
Nature ; 606(7912): 120-128, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35545678

RESUMO

Non-coding genetic variants may cause disease by modulating gene expression. However, identifying these expression quantitative trait loci (eQTLs) is complicated by differences in gene regulation across fluid functional cell states within cell types. These states-for example, neurotransmitter-driven programs in astrocytes or perivascular fibroblast differentiation-are obscured in eQTL studies that aggregate cells1,2. Here we modelled eQTLs at single-cell resolution in one complex cell type: memory T cells. Using more than 500,000 unstimulated memory T cells from 259 Peruvian individuals, we show that around one-third of 6,511 cis-eQTLs had effects that were mediated by continuous multimodally defined cell states, such as cytotoxicity and regulatory capacity. In some loci, independent eQTL variants had opposing cell-state relationships. Autoimmune variants were enriched in cell-state-dependent eQTLs, including risk variants for rheumatoid arthritis near ORMDL3 and CTLA4; this indicates that cell-state context is crucial to understanding potential eQTL pathogenicity. Moreover, continuous cell states explained more variation in eQTLs than did conventional discrete categories, such as CD4+ versus CD8+, suggesting that modelling eQTLs and cell states at single-cell resolution can expand insight into gene regulation in functionally heterogeneous cell types.


Assuntos
Predisposição Genética para Doença , Células T de Memória , Locos de Características Quantitativas , Regulação da Expressão Gênica , Predisposição Genética para Doença/genética , Humanos , Células T de Memória/imunologia , Células T de Memória/metabolismo , Peru , Locos de Características Quantitativas/genética
5.
Nature ; 602(7898): 676-681, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35016198

RESUMO

The B.1.1.529/Omicron variant of SARS-CoV-2 was only recently detected in southern Africa, but its subsequent spread has been extensive, both regionally and globally1. It is expected to become dominant in the coming weeks2, probably due to enhanced transmissibility. A striking feature of this variant is the large number of spike mutations3 that pose a threat to the efficacy of current COVID-19 vaccines and antibody therapies4. This concern is amplified by the findings of our study. Here we found that B.1.1.529 is markedly resistant to neutralization by serum not only from patients who recovered from COVID-19, but also from individuals who were vaccinated with one of the four widely used COVID-19 vaccines. Even serum from individuals who were vaccinated and received a booster dose of mRNA-based vaccines exhibited substantially diminished neutralizing activity against B.1.1.529. By evaluating a panel of monoclonal antibodies against all known epitope clusters on the spike protein, we noted that the activity of 17 out of the 19 antibodies tested were either abolished or impaired, including ones that are currently authorized or approved for use in patients. Moreover, we also identified four new spike mutations (S371L, N440K, G446S and Q493R) that confer greater antibody resistance on B.1.1.529. The Omicron variant presents a serious threat to many existing COVID-19 vaccines and therapies, compelling the development of new interventions that anticipate the evolutionary trajectory of SARS-CoV-2.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/virologia , Evasão da Resposta Imune/imunologia , SARS-CoV-2/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/sangue , COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , Linhagem Celular , Convalescença , Evolução Molecular , Humanos , Soros Imunes/imunologia , Concentração Inibidora 50 , Modelos Moleculares , Mutação , Testes de Neutralização , SARS-CoV-2/química , SARS-CoV-2/classificação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
6.
Nature ; 604(7906): 553-556, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35240676

RESUMO

The identification of the Omicron (B.1.1.529.1 or BA.1) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Botswana in November 20211 immediately caused concern owing to the number of alterations in the spike glycoprotein that could lead to antibody evasion. We2 and others3-6 recently reported results confirming such a concern. Continuing surveillance of the evolution of Omicron has since revealed the rise in prevalence of two sublineages, BA.1 with an R346K alteration (BA.1+R346K, also known as BA.1.1) and B.1.1.529.2 (BA.2), with the latter containing 8 unique spike alterations and lacking 13 spike alterations found in BA.1. Here we extended our studies to include antigenic characterization of these new sublineages. Polyclonal sera from patients infected by wild-type SARS-CoV-2 or recipients of current mRNA vaccines showed a substantial loss in neutralizing activity against both BA.1+R346K and BA.2, with drops comparable to that already reported for BA.1 (refs. 2,3,5,6). These findings indicate that these three sublineages of Omicron are antigenically equidistant from the wild-type SARS-CoV-2 and thus similarly threaten the efficacies of current vaccines. BA.2 also exhibited marked resistance to 17 of 19 neutralizing monoclonal antibodies tested, including S309 (sotrovimab)7, which had retained appreciable activity against BA.1 and BA.1+R346K (refs. 2-4,6). This finding shows that no authorized monoclonal antibody therapy could adequately cover all sublineages of the Omicron variant, except for the recently authorized LY-CoV1404 (bebtelovimab).


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Anticorpos Neutralizantes , Anticorpos Antivirais , Humanos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
7.
Nature ; 593(7857): 130-135, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33684923

RESUMO

The COVID-19 pandemic has had widespread effects across the globe, and its causative agent, SARS-CoV-2, continues to spread. Effective interventions need to be developed to end this pandemic. Single and combination therapies with monoclonal antibodies have received emergency use authorization1-3, and more treatments are under development4-7. Furthermore, multiple vaccine constructs have shown promise8, including two that have an approximately 95% protective efficacy against COVID-199,10. However, these interventions were directed against the initial SARS-CoV-2 virus that emerged in 2019. The recent detection of SARS-CoV-2 variants B.1.1.7 in the UK11 and B.1.351 in South Africa12 is of concern because of their purported ease of transmission and extensive mutations in the spike protein. Here we show that B.1.1.7 is refractory to neutralization by most monoclonal antibodies against the N-terminal domain of the spike protein and is relatively resistant to a few monoclonal antibodies against the receptor-binding domain. It is not more resistant to plasma from individuals who have recovered from COVID-19 or sera from individuals who have been vaccinated against SARS-CoV-2. The B.1.351 variant is not only refractory to neutralization by most monoclonal antibodies against the N-terminal domain but also by multiple individual monoclonal antibodies against the receptor-binding motif of the receptor-binding domain, which is mostly due to a mutation causing an E484K substitution. Moreover, compared to wild-type SARS-CoV-2, B.1.351 is markedly more resistant to neutralization by convalescent plasma (9.4-fold) and sera from individuals who have been vaccinated (10.3-12.4-fold). B.1.351 and emergent variants13,14 with similar mutations in the spike protein present new challenges for monoclonal antibody therapies and threaten the protective efficacy of current vaccines.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/terapia , Evasão da Resposta Imune/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto , Idoso , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , COVID-19/prevenção & controle , COVID-19/virologia , Chlorocebus aethiops , Farmacorresistência Viral/imunologia , Células HEK293 , Humanos , Evasão da Resposta Imune/genética , Imunização Passiva , Pessoa de Meia-Idade , Modelos Moleculares , Mutação , Testes de Neutralização , Domínios Proteicos/imunologia , SARS-CoV-2/química , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Vacinas Sintéticas/imunologia , Células Vero , Soroterapia para COVID-19 , Tratamento Farmacológico da COVID-19 , Vacinas de mRNA
8.
Nature ; 595(7866): 278-282, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34098567

RESUMO

Since the start of the COVID-19 pandemic, SARS-CoV-2 has caused millions of deaths worldwide. Although a number of vaccines have been deployed, the continual evolution of the receptor-binding domain (RBD) of the virus has challenged their efficacy. In particular, the emerging variants B.1.1.7, B.1.351 and P.1 (first detected in the UK, South Africa and Brazil, respectively) have compromised the efficacy of sera from patients who have recovered from COVID-19 and immunotherapies that have received emergency use authorization1-3. One potential alternative to avert viral escape is the use of camelid VHHs (variable heavy chain domains of heavy chain antibody (also known as nanobodies)), which can recognize epitopes that are often inaccessible to conventional antibodies4. Here, we isolate anti-RBD nanobodies from llamas and from mice that we engineered to produce VHHs cloned from alpacas, dromedaries and Bactrian camels. We identified two groups of highly neutralizing nanobodies. Group 1 circumvents antigenic drift by recognizing an RBD region that is highly conserved in coronaviruses but rarely targeted by human antibodies. Group 2 is almost exclusively focused to the RBD-ACE2 interface and does not neutralize SARS-CoV-2 variants that carry E484K or N501Y substitutions. However, nanobodies in group 2 retain full neutralization activity against these variants when expressed as homotrimers, and-to our knowledge-rival the most potent antibodies against SARS-CoV-2 that have been produced to date. These findings suggest that multivalent nanobodies overcome SARS-CoV-2 mutations through two separate mechanisms: enhanced avidity for the ACE2-binding domain and recognition of conserved epitopes that are largely inaccessible to human antibodies. Therefore, although new SARS-CoV-2 mutants will continue to emerge, nanobodies represent promising tools to prevent COVID-19 mortality when vaccines are compromised.


Assuntos
Anticorpos Neutralizantes/imunologia , Camelídeos Americanos/imunologia , SARS-CoV-2/imunologia , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/isolamento & purificação , Sistemas CRISPR-Cas , Camelídeos Americanos/genética , Feminino , Edição de Genes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Mutação , Testes de Neutralização , SARS-CoV-2/química , SARS-CoV-2/genética , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/isolamento & purificação , Hipermutação Somática de Imunoglobulina/genética
9.
PLoS Genet ; 20(6): e1011313, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38870230

RESUMO

A quarter of humanity is estimated to have been exposed to Mycobacterium tuberculosis (Mtb) with a 5-10% risk of developing tuberculosis (TB) disease. Variability in responses to Mtb infection could be due to host or pathogen heterogeneity. Here, we focused on host genetic variation in a Peruvian population and its associations with gene regulation in monocyte-derived macrophages and dendritic cells (DCs). We recruited former household contacts of TB patients who previously progressed to TB (cases, n = 63) or did not progress to TB (controls, n = 63). Transcriptomic profiling of monocyte-derived DCs and macrophages measured the impact of genetic variants on gene expression by identifying expression quantitative trait loci (eQTL). We identified 330 and 257 eQTL genes in DCs and macrophages (False Discovery Rate (FDR) < 0.05), respectively. Four genes in DCs showed interaction between eQTL variants and TB progression status. The top eQTL interaction for a protein-coding gene was with FAH, the gene encoding fumarylacetoacetate hydrolase, which mediates the last step in mammalian tyrosine catabolism. FAH expression was associated with genetic regulatory variation in cases but not controls. Using public transcriptomic and epigenomic data of Mtb-infected monocyte-derived dendritic cells, we found that Mtb infection results in FAH downregulation and DNA methylation changes in the locus. Overall, this study demonstrates effects of genetic variation on gene expression levels that are dependent on history of infectious disease and highlights a candidate pathogenic mechanism through pathogen-response genes. Furthermore, our results point to tyrosine metabolism and related candidate TB progression pathways for further investigation.


Assuntos
Células Dendríticas , Macrófagos , Mycobacterium tuberculosis , Locos de Características Quantitativas , Tuberculose , Humanos , Peru , Tuberculose/genética , Tuberculose/microbiologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Mycobacterium tuberculosis/patogenicidade , Mycobacterium tuberculosis/genética , Feminino , Células Dendríticas/metabolismo , Masculino , Adulto , Predisposição Genética para Doença , Variação Genética , Regulação da Expressão Gênica , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Perfilação da Expressão Gênica
10.
Nature ; 584(7821): 450-456, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32698192

RESUMO

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic continues, with devasting consequences for human lives and the global economy1,2. The discovery and development of virus-neutralizing monoclonal antibodies could be one approach to treat or prevent infection by this coronavirus. Here we report the isolation of sixty-one SARS-CoV-2-neutralizing monoclonal antibodies from five patients infected with SARS-CoV-2 and admitted to hospital with severe coronavirus disease 2019 (COVID-19). Among these are nineteen antibodies that potently neutralized authentic SARS-CoV-2 in vitro, nine of which exhibited very high potency, with 50% virus-inhibitory concentrations of 0.7 to 9 ng ml-1. Epitope mapping showed that this collection of nineteen antibodies was about equally divided between those directed against the receptor-binding domain (RBD) and those directed against the N-terminal domain (NTD), indicating that both of these regions at the top of the viral spike are immunogenic. In addition, two other powerful neutralizing antibodies recognized quaternary epitopes that overlap with the domains at the top of the spike. Cryo-electron microscopy reconstructions of one antibody that targets the RBD, a second that targets the NTD, and a third that bridges two separate RBDs showed that the antibodies recognize the closed, 'all RBD-down' conformation of the spike. Several of these monoclonal antibodies are promising candidates for clinical development as potential therapeutic and/or prophylactic agents against SARS-CoV-2.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Epitopos de Linfócito B/imunologia , Pneumonia Viral/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Monoclonais/análise , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/ultraestrutura , Anticorpos Neutralizantes/análise , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/ultraestrutura , Anticorpos Antivirais/análise , Anticorpos Antivirais/química , Anticorpos Antivirais/ultraestrutura , Betacoronavirus/química , Betacoronavirus/ultraestrutura , COVID-19 , Infecções por Coronavirus/prevenção & controle , Microscopia Crioeletrônica , Modelos Animais de Doenças , Mapeamento de Epitopos , Epitopos de Linfócito B/química , Epitopos de Linfócito B/ultraestrutura , Feminino , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/ultraestrutura , Pulmão/patologia , Pulmão/virologia , Masculino , Mesocricetus , Modelos Moleculares , Testes de Neutralização , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/ultraestrutura
11.
Nature ; 582(7811): 234-239, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32499652

RESUMO

On average, Peruvian individuals are among the shortest in the world1. Here we show that Native American ancestry is associated with reduced height in an ethnically diverse group of Peruvian individuals, and identify a population-specific, missense variant in the FBN1 gene (E1297G) that is significantly associated with lower height. Each copy of the minor allele (frequency of 4.7%) reduces height by 2.2 cm (4.4 cm in homozygous individuals). To our knowledge, this is the largest effect size known for a common height-associated variant. FBN1 encodes the extracellular matrix protein fibrillin 1, which is a major structural component of microfibrils. We observed less densely packed fibrillin-1-rich microfibrils with irregular edges in the skin of individuals who were homozygous for G1297 compared with individuals who were homozygous for E1297. Moreover, we show that the E1297G locus is under positive selection in non-African populations, and that the E1297 variant shows subtle evidence of positive selection specifically within the Peruvian population. This variant is also significantly more frequent in coastal Peruvian populations than in populations from the Andes or the Amazon, which suggests that short stature might be the result of adaptation to factors that are associated with the coastal environment in Peru.


Assuntos
Estatura/genética , Fibrilina-1/genética , Mutação de Sentido Incorreto , Seleção Genética , Feminino , Frequência do Gene , Estudo de Associação Genômica Ampla , Hereditariedade , Humanos , Indígenas Sul-Americanos/genética , Masculino , Microfibrilas/química , Microfibrilas/genética , Peru
12.
Nature ; 626(8000): 724-725, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38355995
13.
J Allergy Clin Immunol ; 154(3): 670-678, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38825025

RESUMO

BACKGROUND: Eicosanoids are lipid mediators including thromboxanes (TXs), prostaglandins (PGs), and leukotrienes with a pathophysiological role in established atopic disease. However, their role in the inception of disease is unclear. This study aimed to investigate the association between urinary eicosanoids in early life and development of atopic disease. METHODS: This study quantified the levels of 21 eicosanoids in urine from children from the COPSAC2010 (Copenhagen Prospective Studies on Asthma in Childhood 2010) (age 1 year, n = 450) and VDAART (Vitamin D Antenatal Asthma Reduction Trial) (age 3 years, n = 575) mother-child cohorts and analyzed the associations with development of wheeze/asthma, atopic dermatitis, and biomarkers of type-2 inflammation, applying false discovery rate of 5% (FDR5%) multiple testing correction. RESULTS: In both cohorts, analyses adjusted for environmental determinants showed that higher TXA2 eicosanoids in early life were associated with increased risk of developing atopic dermatitis (P < FDR5%) and type-2 inflammation (P < .05). In VDAART, lower PGE2 and PGI2 eicosanoids and higher isoprostanes were also associated with increased risk of atopic dermatitis (P < FDR5%). For wheeze/asthma, analyses in COPSAC2010 showed that lower isoprostanes and PGF2 eicosanoids and higher PGD2 eicosanoids at age 1 year associated with an increased risk at age 1-10 years (P < .05), whereas analyses in VDAART showed that lower PGE2 and higher TXA2 eicosanoids at age 3 years associated with an increased risk at 6 years (P < FDR5%). CONCLUSIONS: This study suggests that early life perturbations in the eicosanoid metabolism are present before the onset of atopic disease in childhood, which provides pathophysiological insight in the inception of atopic diseases.


Assuntos
Asma , Dermatite Atópica , Eicosanoides , Humanos , Eicosanoides/urina , Feminino , Pré-Escolar , Masculino , Lactente , Dermatite Atópica/urina , Dermatite Atópica/epidemiologia , Asma/urina , Asma/epidemiologia , Biomarcadores/urina , Fatores de Risco , Criança
14.
Anal Chem ; 96(39): 15665-15673, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39298294

RESUMO

Tumor-derived small extracellular vesicle (sEV) microRNAs (miRNAs) are emerging biomarkers for cancer diagnostics. Conventional sEV miRNA detection methods necessitate the lysis of sEVs, rendering them laborious and time-consuming and potentially leading to damage or loss of miRNAs. Membrane fusion-based in situ detection of sEV miRNAs involves the preparation of probe-loaded vesicles (e.g., liposomes or cellular vesicles), which are typically sophisticated and require specialist equipment. Membrane perforation methods employ chemical treatments that can induce severe miRNA degradation or leaks. Inspired by previous studies that loaded nucleic acids into EVs or cells using hydrophobic tethers for therapeutic applications, herein, we repurposed this strategy by conjugating a hydrophobic tether onto molecular beacons to aid their transportation into sEVs, allowing for in situ detection of miRNAs in a fusion-free and multiplexing manner. This method enables simultaneous detection of multiple miRNA species within serum-derived sEVs for the diagnosis of prostate cancer, breast cancer, and gastric cancer with an accuracy of 83.3%, 81.8%, and 100%, respectively, in a cohort of 66 individuals, indicating that it holds a high application potential in clinical diagnostics.


Assuntos
Vesículas Extracelulares , MicroRNAs , Humanos , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , MicroRNAs/análise , Feminino , Masculino , Biomarcadores Tumorais/análise , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias da Mama/diagnóstico , Neoplasias da Próstata/diagnóstico
15.
Anal Chem ; 96(14): 5527-5536, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38483815

RESUMO

Dynamic tracing of intracellular telomerase activity plays a crucial role in cancer cell recognition and correspondingly in earlier cancer diagnosis and personalized precision therapy. However, due to the complexity of the required reaction system and insufficient loading of reaction components into cells, achieving a high-fidelity determination of telomerase activity is still a challenge. Herein, an Aptamer-Liposome mediated Telomerase activated poly-Molecular beacon Arborescent Nanoassembly(ALTMAN) approach was described for direct high-fidelity visualization of telomerase activity. Briefly, intracellular telomerase activates molecular beacons, causing their hairpin structures to unfold and produce fluorescent signals. Furthermore, multiple molecular beacons can self-assemble, forming arborescent nanostructures and leading to exponential amplification of fluorescent signals. Integrating the enzyme-free isothermal signal amplification successfully increased the sensitivity and reduced interference by leveraging the skillful design of the molecular beacon and the extension of the telomerase-activated TTAGGG repeat sequence. The proposed approach enabled ultrasensitive visualization of activated telomerase exclusively with a prominent detection limit of 2 cells·µL-1 and realized real-time imaging of telomerase activity in living cancer cells including blood samples from breast cancer patients and urine samples from bladder cancer patients. This approach opens an avenue for establishing a telomerase activity determination and in situ monitoring technique that can facilitate both telomerase fundamental biological studies and cancer diagnostics.


Assuntos
Nanoestruturas , Células Neoplásicas Circulantes , Telomerase , Humanos , Telomerase/metabolismo , Corantes Fluorescentes/química , Nanoestruturas/química , Células HeLa
16.
Small ; 20(5): e2305909, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37759426

RESUMO

The research on systems with coexistence of superconductivity and nontrivial band topology has attracted widespread attention. However, the limited availability of material platforms severely hinders the research progress. Here, it reports the first experimental synthesis and measurement of high-quality single crystal van der Waals transition-metal dichalcogenide InNbS2 , revealing it as a topological nodal line semimetal with coexisting superconductivity. The temperature-dependent measurements of magnetization susceptibility and electrical transport show that InNbS2 is a type-II superconductor with a transition temperature Tc of 6 K. First-principles calculations predict multiple topological nodal ring states close to the Fermi level in the presence of spin-orbit coupling. Similar features are also observed in the as-synthesized BiNbS2 and PbNbS2 samples. This work provides new material platforms ANbS2 (A = In, Bi, and Pb) and uncovers their intriguing potential for exploring the interplay between superconductivity and band topology.

17.
Hum Reprod ; 39(9): 1960-1968, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960877

RESUMO

STUDY QUESTION: Does vitrification cryopreservation of embryos for more than 5 years affect the pregnancy outcomes after frozen embryo transfer (FET)? SUMMARY ANSWER: Vitrification cryopreservation of good-quality blastocysts for more than 5 years is associated with a decrease in the implantation rate (IR) and live birth rate (LBR). WHAT IS KNOWN ALREADY: Previous studies have predominantly focused on embryos cryopreserved for relatively short durations (less than 5 years), yet the impact of extended cryopreservation duration on pregnancy outcomes remains a controversial issue. There is a relative scarcity of data regarding the efficacy and safety of storing embryos for 5 years or longer. STUDY DESIGN, SIZE, DURATION: This retrospective study involved 36 665 eligible vitrified-thawed embryo transfer cycles from 1 January 2016 to 31 December 2022, at a single fertility center in China. PARTICIPANTS/MATERIALS, SETTING, METHODS: Patients were divided into three groups according to embryo storage time: Group 1 consisted of 31 565 cycles, with storage time of 0-2 years; Group 2 consisted of 4458 cycles, with a storage time of 2-5 years; and Group 3 included 642 cycles, with storage time exceeding 5 years. The main outcome measures were IR and LBR. Secondary outcome variables included rates of biochemical pregnancy, multiple pregnancy, ectopic pregnancy, and miscarriage, as well as neonatal outcomes. Reproductive outcomes were analyzed as binary variables. Multivariate logistic regression analysis was used to explore the effect of preservation time on pregnancy outcomes after correcting for confounding factors. In addition, we also assessed neonatal outcomes, such as large for gestational age (LGA) and small for gestational age (SGA). MAIN RESULTS AND THE ROLE OF CHANCE: IRs in the three groups (0-2, 2-5, and >5 years) were 37.37%, 39.03%, and 35.78%, respectively (P = 0.017), and LBRs in the three groups were 37.29%, 39.09%, and 34.91%, respectively (P = 0.028). After adjustment for potential confounding factors, compared with the 0-2 years storage group, prolonged embryo vitrification preservation time (2-5 years or >5 years) did not affect secondary outcomes such as rates of biochemical pregnancy, multiple pregnancy, ectopic pregnancy, and miscarriage (P > 0.05). But cryopreservation of embryos for more than 5 years reduced the IR (adjusted odds ratio (aOR) 0.82, 95% CI 0.69-0.97, P = 0.020) and LBR (aOR 0.76, 95% CI 0.64-0.91, P = 0.002). Multivariate stratified analysis also showed that prolonging the cryopreservation time of blastocysts (>5 years) reduced the IR (aOR 0.78, 95% CI 0.62-0.98, P = 0.033) and LBR (aOR 0.68, 95% CI 0.53-0.87, P = 0.002). However, no effect on cleavage embryos was observed (P > 0.05). We further conducted stratified analyses based on the number and quality of frozen blastocysts transferred, and the results showed that the FET results after transfers of good-quality blastocysts in the >5 years storage group were negatively affected. However, the storage time of non-good-quality blastocysts was not significantly associated with pregnancy outcomes. Regarding the neonatal outcomes (of singletons), embryo vitrification preservation time had no effect on preterm birth rates, fetal birth weight, or neonatal sex ratios. However, as the storage time increased, rates of SGA (5.60%, 4.10%, and 1.18%) decreased, while rates of LGA (5.22%, 6.75%, and 9.47%) increased (P < 0.05). After adjusting for confounding factors, the increase in LGA and the decrease in SGA were significantly correlated with the duration of storage time. LIMITATIONS, REASONS FOR CAUTION: This was a retrospective study using data from a single fertility center, even though the data had been adjusted, our findings still need to be validated in further studies. WIDER IMPLICATIONS OF THE FINDINGS: With the full implementation of the two-child policy in China, there may be more patients whose embryos have been frozen for a longer time in the future. Patients should be aware that the IR and LBR of blastocysts are negatively affected when the cryopreservation time is longer than 5 years. Couples may therefore consider shortening the time until FET treatment. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by the National Nature Science Foundation of China (No. 82101672), Science and Technology Projects in Guangzhou (No. 2024A03J0180), General Guidance Program for Western Medicine of Guangzhou Municipal Health Commission (No. 20231A011096), and the Medical Key Discipline of Guangzhou (2021-2023). None of the authors have any conflicts of interest to declare. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Coeficiente de Natalidade , Blastocisto , Criopreservação , Implantação do Embrião , Transferência Embrionária , Nascido Vivo , Vitrificação , Humanos , Feminino , Gravidez , Criopreservação/métodos , Estudos Retrospectivos , Adulto , Transferência Embrionária/métodos , Fatores de Tempo , Taxa de Gravidez , Resultado da Gravidez , China
18.
Allergy ; 2024 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-39470619

RESUMO

BACKGROUND: Fecal microbiota transplantation (FMT) is a novel treatment for inflammatory diseases. Herein, we assess its safety, efficacy, and immunological impact in patients with moderate-to-severe atopic dermatitis (AD). METHODS: In this randomized, double-blind, placebo-controlled clinical trial, we performed the efficacy and safety assessment of FMT for moderate-to-severe adult patients with AD. All patients received FMT or placebo once a week for 3 weeks, in addition to their standard background treatments. Patients underwent disease severity assessments at weeks 0, 1, 2, 4, 8, 12, and 16, and blood and fecal samples were collected for immunologic analysis and metagenomic shotgun sequencing, respectively. Safety was monitored throughout the trial. RESULTS: Improvements in eczema area and severity index (EASI) scores and percentage of patients achieving EASI 50 (50% reduction in EASI score) were greater in patients treated with FMT than in placebo-treated patients. No serious adverse reactions occurred during the trial. FMT treatment decreased the Th2 and Th17 cell proportions among the peripheral blood mononuclear cells, and the levels of TNF-α, and total IgE in serum. By contrast, the expression levels of IL-12p70 and perforin on NK cells were increased. Moreover, FMT altered the abundance of species and functional pathways of the gut microbiota in the patients, especially the abundance of Megamonas funiformis and the pathway for 1,4-dihydroxy-6-naphthoate biosynthesis II. CONCLUSION: FMT was a safe and effective therapy in moderate-to-severe adult patients with AD; the treatment changed the gut microbiota compositions and functions.

19.
Chemistry ; 30(48): e202401774, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-38923704

RESUMO

We disclose herein a novel and general radical approach to alkylthiopurines, encompassing 4 types of thiopurines, as well as their corresponding ribosides. This strategy is achieved through visible light-mediated late-stage functionalization of the sulfur atoms of mercaptopurines. The in situ-generated disulfide was proposed as the pivotal neutral intermediate for this transformation. We present herein a novel photo-mediated homolytic C-S bond formation for the preparation of alkylthiopurines and alkylthiopurine nucleosides. Despite the presence of reactive sites for the Minisci reaction, chemoselective S-alkylation remained the predominant pathway. This method allows for the late-stage introduction of a broad spectrum of alkyl groups onto the sulfur atom of unprotective mercaptopurine derivatives, encompassing 2-, 6-, and 8-mercaptopurine rings. Organoborons serve as efficient and eco-friendly alkylating reagents, providing advantages in terms of readily availability, stability, and reduced toxicity. Further derivatization of the thioetherified nucleosides, together with anti-tumor assays, led to the discovery of potent anti-tumor agents with an IC50 value reaching 6.1 µM (Comp. 31 for Jurkat).


Assuntos
Luz , Mercaptopurina , Mercaptopurina/química , Humanos , Alquilação , Antineoplásicos/química , Células Jurkat , Sulfetos/química
20.
Chemphyschem ; 25(21): e202400505, 2024 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-38978281

RESUMO

In the catalytic transformation of bio-oil into liquid fuels having alkanes via hydrodeoxygenation (HDO), the acid and metal sites in the catalyst are pivotal for promoting the HDO of lignin-derived phenolic compounds. This study introduces a novel bifunctional catalyst comprising phosphomolybdenum-vanadium heteropolyacids (H4PMo11VO40) coupled with Ni/C. The HDO reaction of the model compound guaiacol was carried out under reaction conditions of 230 °C, revealing the superior performance of H4PMo11VO40 with Ni/C catalysts compared to the conventional acids, even at low dosage. The Keggin structure of H4PMo11VO40 provided a solid catalyst with strong acidic and redox properties, alongside advantages such as ease of synthesis, cost-effectiveness, and tunable acid and redox properties at the molecular level. Characterization of Ni/C and the prepared acid demonstrated favorable pore structure with a mesopore volume of 0.281 cm3/g and an average pore size of 3.404 nm, facilitating uniform distribution and catalytic activity of Ni-metal. Incorporating acid enhances the acidic sites, fostering synergistic interactions between metal and acidic sites within the catalyst, thereby significantly enhancing HDO performance. Guaiacol conversion at 230 °C reached 100 %, with a cyclohexane selectivity of 89.3 %. This study offers a promising avenue for the conversion and upgrading of lignin-derived phenolic compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA