RESUMO
ABSTRACT: The liver plays a crucial role in maintaining systemic iron homeostasis by secreting hepcidin, which is essential for coordinating iron levels in the body. Imbalances in iron homeostasis are associated with various clinical disorders related to iron deficiency or iron overload. Despite the clinical significance, the mechanisms underlying how hepatocytes sense extracellular iron levels to regulate hepcidin synthesis and iron storage are not fully understood. In this study, we identified Foxo1, a well-known regulator of macronutrient metabolism, which translocates to the nucleus of hepatocytes in response to high-iron feeding, holo-transferrin, and bone morphogenetic protein 6 (BMP6) treatment. Furthermore, Foxo1 plays a crucial role in mediating hepcidin induction in response to both iron and BMP signals by directly interacting with evolutionally conserved Foxo binding sites within the hepcidin promoter region. These binding sites were found to colocalize with Smad-binding sites. To investigate the physiological relevance of Foxo1 in iron metabolism, we generated mice with hepatocyte-specific deletion of Foxo1. These mice exhibited reduced hepatic hepcidin expression and serum hepcidin levels, accompanied by elevated serum iron and liver nonheme iron concentrations. Moreover, high-iron diet further exacerbated these abnormalities in iron metabolism in mice lacking hepatic Foxo1. Conversely, hepatocyte-specific Foxo1 overexpression increased hepatic hepcidin expression and serum hepcidin levels, thereby ameliorating iron overload in a murine model of hereditary hemochromatosis (Hfe-/- mice). In summary, our study identifies Foxo1 as a critical regulator of hepcidin and systemic iron homeostasis. Targeting Foxo1 may offer therapeutic opportunities for managing conditions associated with aberrant iron metabolism.
Assuntos
Proteína Forkhead Box O1 , Hepatócitos , Hepcidinas , Homeostase , Ferro , Animais , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Ferro/metabolismo , Hepcidinas/metabolismo , Hepcidinas/genética , Camundongos , Hepatócitos/metabolismo , Humanos , Camundongos Knockout , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Regulação da Expressão GênicaRESUMO
BACKGROUND AND AIMS: Stanford type A aortic dissection (AD) is a degenerative aortic remodelling disease marked by an exceedingly high mortality without effective pharmacologic therapies. Smooth muscle cells (SMCs) lining tunica media adopt a range of states, and their transformation from contractile to synthetic phenotypes fundamentally triggers AD. However, the underlying pathomechanisms governing this population shift and subsequent AD, particularly at distinct disease temporal stages, remain elusive. METHODS: Ascending aortas from nine patients undergoing ascending aorta replacement and five individuals undergoing heart transplantation were subjected to single-cell RNA sequencing. The pathogenic targets governing the phenotypic switch of SMCs were identified by trajectory inference, functional scoring, single-cell regulatory network inference and clustering, regulon, and interactome analyses and confirmed using human ascending aortas, primary SMCs, and a ß-aminopropionitrile monofumarate-induced AD model. RESULTS: The transcriptional profiles of 93 397 cells revealed a dynamic temporal-specific phenotypic transition and marked elevation of the activator protein-1 (AP-1) complex, actively enabling synthetic SMC expansion. Mechanistically, tumour necrosis factor signalling enhanced AP-1 transcriptional activity by dampening mitochondrial oxidative phosphorylation (OXPHOS). Targeting this axis with the OXPHOS enhancer coenzyme Q10 or AP-1-specific inhibitor T-5224 impedes phenotypic transition and aortic degeneration while improving survival by 42.88% (58.3%-83.3% for coenzyme Q10 treatment), 150.15% (33.3%-83.3% for 2-week T-5224), and 175.38% (33.3%-91.7% for 3-week T-5224) in the ß-aminopropionitrile monofumarate-induced AD model. CONCLUSIONS: This cross-sectional compendium of cellular atlas of human ascending aortas during AD progression provides previously unappreciated insights into a transcriptional programme permitting aortic degeneration, highlighting a translational proof of concept for an anti-remodelling intervention as an attractive strategy to manage temporal-specific AD by modulating the tumour necrosis factor-OXPHOS-AP-1 axis.
Assuntos
Doenças da Aorta , Dissecção Aórtica , Benzofenonas , Isoxazóis , Doenças Vasculares , Humanos , Fator de Transcrição AP-1 , Aminopropionitrilo , Estudos Transversais , Dissecção Aórtica/genética , Doenças da Aorta/patologia , Doenças Vasculares/patologia , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/fisiologia , Fatores de Necrose TumoralRESUMO
The Hippo-YAP signaling pathway plays an essential role in epithelial cells during intestinal regeneration and tumorigenesis. However, the molecular mechanism linking stromal signals to YAP-mediated intestinal regeneration and tumorigenesis is poorly defined. Here, we report a stroma-epithelium ISLR-YAP signaling axis essential for stromal cells to modulate epithelial cell growth during intestinal regeneration and tumorigenesis. Specifically, upon inflammation and in cancer, an oncogenic transcription factor ETS1 in stromal cells induces expression of a secreted protein ISLR that can inhibit Hippo signaling and activate YAP in epithelial cells. Deletion of Islr in stromal cells in mice markedly impaired intestinal regeneration and suppressed tumorigenesis in the colon. Moreover, the expression of stromal cell-specific ISLR and ETS1 significantly increased in inflamed mucosa of human IBD patients and in human colorectal adenocarcinoma, accounting for the epithelial YAP hyperactivation. Collectively, our findings provide new insights into the signaling crosstalk between stroma and epithelium during tissue regeneration and tumorigenesis.
Assuntos
Neoplasias Colorretais/metabolismo , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Proteína Proto-Oncogênica c-ets-1/metabolismo , Animais , Neoplasias Colorretais/genética , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Células HCT116 , Células HEK293 , Células HT29 , Via de Sinalização Hippo , Humanos , Doenças Inflamatórias Intestinais/genética , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Mutação , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de SinaisRESUMO
Mutations of the FBN1 gene lead to Marfan syndrome (MFS), which is an autosomal dominant connective tissue disorder featured by thoracic aortic aneurysm risk. There is currently no effective treatment for MFS. Here, we studied the role of mitochondrial dysfunction in the phenotypic transformation of human smooth muscle cells (SMCs) and whether a mitochondrial boosting strategy can be a potential treatment. We knocked down FBN1 in SMCs to create an MFS cell model and used rotenone to induce mitochondrial dysfunction. Furthermore, we incubated the shFBN1 SMCs with Coenzyme Q10 (CoQ10) to assess whether restoring mitochondrial function can reverse the phenotypic transformation. The results showed that shFBN1 SMCs had decreased TFAM (mitochondrial transcription factor A), mtDNA levels and mitochondrial mass, lost their contractile capacity and had increased synthetic phenotype markers. Inhibiting the mitochondrial function of SMCs can decrease the expression of contractile markers and increase the expression of synthetic genes. Imposing mitochondrial stress causes a double-hit effect on the TFAM level, oxidative phosphorylation and phenotypic transformation of FBN1-knockdown SMCs while restoring mitochondrial metabolism with CoQ10 can rapidly reverse the synthetic phenotype. Our results suggest that mitochondria function is a potential therapeutic target for the phenotypic transformation of SMCs in MFS.
Assuntos
Síndrome de Marfan , Doenças Mitocondriais , Ubiquinona/análogos & derivados , Humanos , Síndrome de Marfan/genética , Fenótipo , Miócitos de Músculo Liso/metabolismo , Doenças Mitocondriais/metabolismo , Fibrilina-1/metabolismo , Adipocinas/metabolismoRESUMO
Autophagy is a multi-step catabolic process that delivers cellular components to lysosomes for degradation and recycling. The dysregulation of this precisely controlled process disrupts cellular homeostasis and leads to many pathophysiological conditions. The mechanistic target of rapamycin (mTOR) is a central nutrient sensor that integrates growth signals with anabolism to fulfil biosynthetic and bioenergetic requirements. mTOR nucleates two distinct evolutionarily conserved complexes (mTORC1 and mTORC2). However, only mTORC1 is acutely inhibited by rapamycin. Consequently, mTORC1 is a well characterized regulator of autophagy. While less is known about mTORC2, the availability of acute small molecule inhibitors and multiple genetic models has led to increased understanding about the role of mTORC2 in autophagy. Emerging evidence suggests that the regulation of mTORC2 in autophagy is mainly through its downstream effector proteins, and is variable under different conditions and cellular contexts. Here, we review recent advances that describe a role for mTORC2 in this catabolic process, and propose that mTORC2 could be a potential clinical target for the treatment of autophagy-related diseases. Video abstract.
Assuntos
Proteínas Proto-Oncogênicas c-akt , Serina-Treonina Quinases TOR , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Sirolimo/farmacologia , AutofagiaRESUMO
Vascular remodeling is a common pathological hallmark of many cardiovascular diseases. Vascular smooth muscle cells (VSMCs) are the predominant cell type lining the tunica media and play a crucial role in maintaining aortic morphology, integrity, contraction and elasticity. Their abnormal proliferation, migration, apoptosis and other activities are tightly associated with a spectrum of structural and functional alterations in blood vessels. Emerging evidence suggests that mitochondria, the energy center of VSMCs, participate in vascular remodeling through multiple mechanisms. For example, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α)-mediated mitochondrial biogenesis prevents VSMCs from proliferation and senescence. The imbalance between mitochondrial fusion and fission controls the abnormal proliferation, migration and phenotypic transformation of VSMCs. Guanosine triphosphate-hydrolyzing enzymes, including mitofusin 1 (MFN1), mitofusin 2 (MFN2), optic atrophy protein 1 (OPA1) and dynamin-related protein 1 (DRP1), are crucial for mitochondrial fusion and fission. In addition, abnormal mitophagy accelerates the senescence and apoptosis of VSMCs. PINK/Parkin and NIX/BINP3 pathways alleviate vascular remodeling by awakening mitophagy in VSMCs. Mitochondrial DNA (mtDNA) damage destroys the respiratory chain of VSMCs, resulting in excessive ROS production and decreased ATP levels, which are related to the proliferation, migration and apoptosis of VSMCs. Thus, maintaining mitochondrial homeostasis in VSMCs is a possible way to relieve pathologic vascular remodeling. This review aims to provide an overview of the role of mitochondria homeostasis in VSMCs during vascular remodeling and potential mitochondria-targeted therapies.
Assuntos
Músculo Liso Vascular , Remodelação Vascular , Humanos , Músculo Liso Vascular/metabolismo , Mitocôndrias/metabolismo , DNA Mitocondrial/metabolismo , Homeostase , Dinâmica Mitocondrial/fisiologiaRESUMO
High mortality rates due to cardiovascular diseases (CVDs) have attracted worldwide attention. It has been reported that mitochondrial dysfunction is one of the most important mechanisms affecting the pathogenesis of CVDs. Mitochondrial DNA (mtDNA) mutations may result in impaired oxidative phosphorylation (OXPHOS), abnormal respiratory chains, and ATP production. In dysfunctional mitochondria, the electron transport chain (ETC) is uncoupled and the energy supply is reduced, while reactive oxygen species (ROS) production is increased. Here, we discussed and analyzed the relationship between mtDNA mutations, impaired mitophagy, decreased OXPHOS, elevated ROS, and CVDs from the perspective of mitochondrial dysfunction. Furthermore, we explored current potential therapeutic strategies for CVDs by eliminating mtDNA mutations (e.g., mtDNA editing and mitochondrial replacement), enhancing mitophagy, improving OXPHOS capacity (e.g., supplement with NAD+, nicotinamide riboside (NR), nicotinamide mononucleotide (NMN), and nano-drug delivery), and reducing ROS (e.g., supplement with Coenzyme Q10 and other antioxidants), and dissected their respective advantages and limitations. In fact, some therapeutic strategies are still a long way from achieving safe and effective clinical treatment. Although establishing effective and safe therapeutic strategies for CVDs remains challenging, starting from a mitochondrial perspective holds bright prospects.
Assuntos
Doenças Cardiovasculares , Doenças Mitocondriais , Humanos , Espécies Reativas de Oxigênio/metabolismo , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/terapia , Doenças Cardiovasculares/metabolismo , Mitocôndrias/metabolismo , DNA Mitocondrial/metabolismo , Transporte de Elétrons , Doenças Mitocondriais/terapia , Doenças Mitocondriais/tratamento farmacológicoRESUMO
Doxorubicin (DOXO) is a potent chemotherapeutic drug widely used to treat various cancers. However, its clinical application is limited due to serious adverse effects on dose-dependent cardiotoxicity. Although the underlying mechanism has not been fully clarified, DOXO-induced cardiotoxicity has been mainly attributed to the accumulation of reactive oxygen species (ROS) in cardiomyocytes. Fucoidan, as a kind of sulphated polysaccharide existing in numerous brown seaweed, has potent anti-oxidant, immune-regulatory, anti-tumor, anti-coagulate and anti-viral activities. Here, we explore the potential protective role and mechanism of fucoidan in DOXO-induced cardiotoxicity in mice. Our results show that oral fucoidan supplement exerts potent protective effects against DOXO-induced cardiotoxicity by reducing oxidative stress and preventing mitochondrial function injury. The improved effect of fucoidan on DOXO-induced cardiotoxicity was evaluated by echocardiography, cardiac myocytes size and cardiac fibrosis analysis, and the expression of genes related to cardiac dysfunction and remodeling. Fucoidan reduced the ROS content and the MDA levels but enhanced the activity of antioxidant enzymes GSH-PX and SOD in the mouse serum in a DOXO-induced cardiotoxicity model. In addition, fucoidan also increased the ATP production capacity and restored the levels of a mitochondrial respiratory chain complex in heart tissue. Collectively, this study highlights fucoidan as a potential polysaccharide for protecting against DOXO-induced cardiovascular diseases.
Assuntos
Antioxidantes , Cardiotoxicidade , Trifosfato de Adenosina/metabolismo , Animais , Antioxidantes/metabolismo , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Doxorrubicina/farmacologia , Camundongos , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Polissacarídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismoRESUMO
Mitochondria, as the main site of cellular energy metabolism and the generation of oxygen free radicals, are the key switch for mitochondria-mediated endogenous apoptosis. Ca2+ is not only an important messenger for cell proliferation, but it is also an indispensable signal for cell death. Ca2+ participates in and plays a crucial role in the energy metabolism, physiology, and pathology of mitochondria. Mitochondria control the uptake and release of Ca2+ through channels/transporters, such as the mitochondrial calcium uniporter (MCU), and influence the concentration of Ca2+ in both mitochondria and cytoplasm, thereby regulating cellular Ca2+ homeostasis. Mitochondrial Ca2+ transport-related processes are involved in important biological processes of tumor cells including proliferation, metabolism, and apoptosis. In particular, MCU and its regulatory proteins represent a new era in the study of MCU-mediated mitochondrial Ca2+ homeostasis in tumors. Through an in-depth analysis of the close correlation between mitochondrial Ca2+ and energy metabolism, autophagy, and apoptosis of tumor cells, we can provide a valuable reference for further understanding of how mitochondrial Ca2+ regulation helps diagnosis and therapy.
Assuntos
Canais de Cálcio , Cálcio , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Cálcio da Dieta , Citoplasma/metabolismo , Mitocôndrias/metabolismoRESUMO
Mitochondria are vital to life and provide biological energy for other organelles and cell physiological processes. On the mitochondrial double layer membrane, there are a variety of channels and transporters to transport different metal ions, such as Ca2+, K+, Na+, Mg2+, Zn2+ and Fe2+/Fe3+. Emerging evidence in recent years has shown that the metal ion transport is essential for mitochondrial function and cellular metabolism, including oxidative phosphorylation (OXPHOS), ATP production, mitochondrial integrity, mitochondrial volume, enzyme activity, signal transduction, proliferation and apoptosis. The homeostasis of mitochondrial metal ions plays an important role in maintaining mitochondria and cell functions and regulating multiple diseases. In particular, channels and transporters for transporting mitochondrial metal ions are very critical, which can be used as potential targets to treat neurodegeneration, cardiovascular diseases, cancer, diabetes and other metabolic diseases. This review summarizes the current research on several types of mitochondrial metal ion channels/transporters and their functions in cell metabolism and diseases, providing strong evidence and therapeutic strategies for further insights into related diseases.
Assuntos
Canais Iônicos/metabolismo , Metais/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Humanos , Transporte de ÍonsRESUMO
The blood-brain barrier (BBB) establishes a protective interface between the central neuronal system and peripheral blood circulation and is crucial for homeostasis of the CNS. BBB formation starts when the endothelial cells (ECs) invade the CNS and pericytes are recruited to the nascent vessels during embryogenesis. Despite the essential function of pericyte-EC interaction during BBB development, the molecular mechanisms coordinating the pericyte-EC behavior and communication remain incompletely understood. Here, we report a single cell receptor, CD146, that presents dynamic expression patterns in the cerebrovasculature at the stages of BBB induction and maturation, coordinates the interplay of ECs and pericytes, and orchestrates BBB development spatiotemporally. In mouse brain, CD146 is first expressed in the cerebrovascular ECs of immature capillaries without pericyte coverage; with increased coverage of pericytes, CD146 could only be detected in pericytes, but not in cerebrovascular ECs. Specific deletion of Cd146 in mice ECs resulted in reduced brain endothelial claudin-5 expression and BBB breakdown. By analyzing mice with specific deletion of Cd146 in pericytes, which have defects in pericyte coverage and BBB integrity, we demonstrate that CD146 functions as a coreceptor of PDGF receptor-ß to mediate pericyte recruitment to cerebrovascular ECs. Moreover, we found that the attached pericytes in turn down-regulate endothelial CD146 by secreting TGF-ß1 to promote further BBB maturation. These results reveal that the dynamic expression of CD146 controls the behavior of ECs and pericytes, thereby coordinating the formation of a mature and stable BBB.
Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Comunicação Celular/fisiologia , Células Endoteliais/metabolismo , Pericitos/metabolismo , Animais , Barreira Hematoencefálica/fisiologia , Encéfalo/fisiologia , Antígeno CD146/metabolismo , Regulação para Baixo/fisiologia , Células Endoteliais/fisiologia , Camundongos , Camundongos Knockout , Pericitos/fisiologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator de Crescimento Transformador beta1/metabolismoRESUMO
Recently, enhanced CD146 expression was reported on endothelial cells in intestinal biopsies from patients with inflammatory bowel disease. However, the underlying mechanism remains unknown. Here, we found that overexpressed endothelial CD146 promoted the inflammatory responses in inflammatory bowel disease, which further potentiated the occurrence of colitis-associated colorectal carcinogenesis. Eliminating endothelial CD146 by conditional knockout significantly ameliorated the severity of inflammation in two different murine models of colitis, and decreased tumor incidence and tumor progression in a murine model of colitis-associated colorectal carcinogenesis. Mechanistic study showed that cytokine tumor necrosis factor-α (TNF-α) up-regulated the expression of endothelial CD146 through NF-κB transactivation. In turn, the enhanced endothelial CD146 expression promoted both angiogenesis and proinflammatory leukocyte extravasations, contributing to inflammation. Using an anti-CD146 antibody, AA98, alone or together with an anti-TNF-α antibody significantly attenuated colitis and prevented colitis-associated colorectal carcinogenesis in mice. Our study provides the first evidence that CD146 plays a dual role on endothelium, facilitating leukocyte extravasations and angiogenesis, thus promoting inflammation. This finding not only reveals the function and regulating mechanism of CD146 in inflammatory bowel disease, but also provides a promising therapeutic strategy for treating inflammatory bowel disease and preventing colitis-associated colorectal carcinogenesis.
Assuntos
Antígeno CD146/metabolismo , Carcinogênese/patologia , Colite/patologia , Colite/prevenção & controle , Animais , Anticorpos/farmacologia , Comunicação Celular/efeitos dos fármacos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/prevenção & controle , Sulfato de Dextrana , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação/patologia , Interleucina-1beta/metabolismo , Leucócitos/efeitos dos fármacos , Leucócitos/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Neovascularização Patológica/patologia , Ativação Transcricional/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/efeitos dos fármacosRESUMO
The epithelial-mesenchymal transition (EMT) plays an important role in breast cancer metastasis, especially in the most aggressive and lethal subtype, "triple-negative breast cancer" (TNBC). Here, we report that CD146 is a unique activator of EMTs and significantly correlates with TNBC. In epithelial breast cancer cells, overexpression of CD146 down-regulated epithelial markers and up-regulated mesenchymal markers, significantly promoted cell migration and invasion, and induced cancer stem cell-like properties. We further found that RhoA pathways positively regulated CD146-induced EMTs via the key EMT transcriptional factor Slug. An orthotopic breast tumor model demonstrated that CD146-overexpressing breast tumors showed a poorly differentiated phenotype and displayed increased tumor invasion and metastasis. We confirmed these findings by conducting an immunohistochemical analysis of 505 human primary breast tumor tissues and found that CD146 expression was significantly associated with high tumor stage, poor prognosis, and TNBC. CD146 was expressed at abnormally high levels (68.9%), and was strongly associated with E-cadherin down-regulation in TNBC samples. Taken together, these findings provide unique evidence that CD146 promotes breast cancer progression by induction of EMTs via the activation of RhoA and up-regulation of Slug. Thus, CD146 could be a therapeutic target for breast cancer, especially for TNBC.
Assuntos
Neoplasias da Mama/genética , Antígeno CD146/genética , Transição Epitelial-Mesenquimal/fisiologia , Adulto , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular , Cães , Feminino , Imunofluorescência , Humanos , Imuno-Histoquímica , Camundongos , Camundongos SCID , Invasividade Neoplásica , Metástase Neoplásica , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição da Família Snail , Fatores de Transcrição/metabolismo , Transfecção , Proteína rhoA de Ligação ao GTP/química , Proteína rhoA de Ligação ao GTP/metabolismoRESUMO
Isoenzyme c of horseradish peroxidase (HRP-C) is widely used in enzyme immunoassay combined with chemiluminescence (CL) detection. For this application, HRP-C activity measurement is usually based on luminol oxidation in the presence of hydrogen peroxide (H2O2). However, this catalysis reaction was enhancer dependent. In this study, we demonstrated that Jatropha curcas peroxidase (JcGP1) showed high efficiency in catalyzing luminol oxidation in the presence of H2O2. Compared with HRP-C, the JcGP1-induced reaction was enhancer independent, which made the enzyme-linked immunosorbent assay (ELISA) simpler. In addition, the JcGP1 catalyzed reaction showed a long-term stable CL signal. We optimized the conditions for JcGP1 catalysis and determined the favorable conditions as follows: 50 mM Tris buffer (pH 8.2) containing 10 mM H2 O2, 14 mM luminol and 0.75 M NaCl. The optimum catalysis temperature was 30°C. The detection limit of JcGP1 under optimum condition was 0.2 pM. Long-term stable CL signal combined with enhancer-independent property indicated that JcGP1 might be a valuable candidate peroxidase for clinical diagnosis and enzyme immunoassay with CL detection.
Assuntos
Jatropha/enzimologia , Medições Luminescentes/métodos , Luminol/química , Peroxidase/química , Catálise , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Peróxido de Hidrogênio/química , Cinética , Limite de Detecção , Luminescência , Oxirredução , Peroxidase/metabolismo , Folhas de Planta/enzimologia , TemperaturaRESUMO
CD146 is a novel endothelial biomarker and plays an essential role in angiogenesis; however, its role in the molecular mechanism underlying angiogenesis remains poorly understood. In the present study, we show that CD146 interacts directly with VEGFR-2 on endothelial cells and at the molecular level and identify the structural basis of CD146 binding to VEGFR-2. In addition, we show that CD146 is required in VEGF-induced VEGFR-2 phosphorylation, AKT/p38 MAPKs/NF-κB activation, and thus promotion of endothelial cell migration and microvascular formation. Furthermore, we show that anti-CD146 AA98 or CD146 siRNA abrogates all VEGFR-2 activation induced by VEGF. An in vivo angiogenesis assay showed that VEGF-promoted microvascular formation was impaired in the endothelial conditional knockout of CD146 (CD146(EC-KO)). Our animal experiments demonstrated that anti-CD146 (AA98) and anti-VEGF (bevacizumab) have an additive inhibitory effect on xenografted human pancreatic and melanoma tumors. The results of the present study suggest that CD146 is a new coreceptor for VEGFR-2 and is therefore a promising target for blocking tumor-related angiogenesis.
Assuntos
Endotélio Vascular/metabolismo , Neovascularização Patológica/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antígeno CD146/química , Antígeno CD146/genética , Antígeno CD146/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Endotélio Vascular/efeitos dos fármacos , Feminino , Humanos , Camundongos , Camundongos Knockout , Camundongos Nus , Terapia de Alvo Molecular , Proteínas Mutantes/antagonistas & inibidores , Proteínas Mutantes/metabolismo , Neovascularização Patológica/tratamento farmacológico , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/metabolismo , Organismos Livres de Patógenos Específicos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidoresRESUMO
OBJECTIVE: To investigate the correlation between the expression of adhesion molecule CD146 and the vulnerability of carotid atherosclerotic plaque. METHODS: The plaque samples were collected from 40 patients who underwent the carotid endarterectomy and were divided into the stable plaque group and the instable plaque group by ultrasound imaging. Five carotid artery samples were taken from the healthy donors as the control. Immunohistochemistry was applied to test the CD146 expression in all samples. RESULTS: Higher expression of CD146 was observed in the atherosclerotic plaques than in the healthy control. Moreover, statistical difference was found in the expression of CD146 in the plaques between the instable plaque group and the stable plaque group (0.31 ± 0.19 vs 0.17 ± 0.07, P < 0.05). The expression of CD146 was positively correlated with the necrotic area (r = 0.471 8, P = 0.019 9) and the matrix metalloproteinase (MMP)-9 expression in the plaques (r = 0.535 6, P = 0.000 9). CONCLUSION: The CD146 expression is correlated with the vulnerability of carotid atherosclerotic plaque.
Assuntos
Placa Aterosclerótica/metabolismo , Antígeno CD146/metabolismo , Endarterectomia das Carótidas , Humanos , Imuno-Histoquímica , Metaloproteinase 9 da Matriz/metabolismoRESUMO
OBJECTIVE: To explore the relationship between circulating level of soluble CD146 (sCD146) and plaque vulnerability or inflammatory factors in patients with carotid atherosclerosis (CAS). METHODS: Forty CAS patients with carotid stenosis ( ≥ 70%) were enrolled and divided into 2 groups of stable and unstable plaque by ultrasonic imaging. And another 40 healthy subjects were enrolled for control group. Double-antibody sandwich enzyme-linked immunosorbent assay (ELISA) was employed to measure the serum levels of sCD146 and matrix metalloproteinase-9 (MMP-9), analyze the correlation of sCD146 with MMP-9 and high sensitivity CRP (hs-CRP), and evaluate whether sCD146 correlates with plaque vulnerability. RESULTS: Soluble CD146 level was elevated in CAS patients versus healthy donors [(212 ± 43) vs (173 ± 36) ng/ml, P < 0.001]. And sCD146 level significantly increased in CAS patients with unstable plaques than those with stable plaque [(218 ± 28) vs (176 ± 25) ng/ml, P < 0.001]. And sCD146 was correlated with high-sensitivity C-reactive protein (hsCRP, r = 0.370 9, P = 0.018 5), a well-known marker for CAS inflammation. Also it was an independent risk factor for plaque vulnerability (OR = 1.16, 95%CI:1.020-1.310, P = 0.019 2). And its level was not correlated with the risk factors of CAS, such as age, homocysteine, triglyceride, total cholesterol (TC), low density lipoprotein-cholesterol (LDL-C) or high density lipoprotein-cholesterol (HDL-C) (P > 0.05). But there was a good correlation with the serum level of MMP-9 in CAS patients (r = 0.677 2, P < 0.001). CONCLUSION: The concentration of soluble CD146 is positively correlated with hsCRP and MMP-9 in CAS patients. And inflammation and neovascularization may interact with each other during atherosclerotic process. The serum level of sCD146 is correlated independently with plaque vulnerability.
Assuntos
Doenças das Artérias Carótidas , Placa Aterosclerótica , Biomarcadores , Proteína C-Reativa , Antígeno CD146 , Estenose das Carótidas , HDL-Colesterol , LDL-Colesterol , Ensaio de Imunoadsorção Enzimática , Humanos , Metaloproteinase 9 da Matriz , Fatores de Risco , TriglicerídeosRESUMO
Inconsistent findings exist regarding the relationship between heme iron intake and type 2 diabetes (T2D) among Western and Eastern populations. Easterners tend to consume a plant-based diet which is abundant in antioxidant minerals. To examine the hypothesis that antioxidant mineral may modify the relationship between iron and T2D, we performed a case-control study by measuring the serum mineral levels in 2198 Chinese subjects. A total of 2113 T2D patients and 2458 controls were invited; 502 T2D patients and 1696 controls were finally analyzed. In the total population, high serum iron showed a positive association with T2D odds (odds ratio [OR] = 1.27 [1.04, 1.55]); high magnesium (OR = 0.18 [0.14, 0.22]), copper (OR = 0.27 [0.21, 0.33]), zinc (OR = 0.37 [0.30, 0.46]), chromium (OR = 0.61 [0.50, 0.74]), or selenium concentrations (OR = 0.39 [0.31, 0.48]) were inversely associated with T2D odds. In contrast, in individuals with higher magnesium (>2673.2 µg/dL), zinc (>136.7 µg/dL), copper (>132.1 µg/dL), chromium (>14.0 µg/dL), or selenium concentrations (>16.8 µg/dL), serum iron displayed no association with T2D (p > 0.05). Serum copper and magnesium were significant modifiers of the association between iron and T2D in individuals with different physiological status (p < 0.05). Our findings support the idea that consuming a diet rich in antioxidant minerals is an effective approach for preventing T2D.
Assuntos
Diabetes Mellitus Tipo 2 , Selênio , Humanos , Ferro , Antioxidantes , Magnésio , Cobre , Diabetes Mellitus Tipo 2/epidemiologia , Estudos de Casos e Controles , Minerais , Zinco , Cromo , ChinaRESUMO
BACKGROUND: The discovery of traditional plants' medicinal and nutritional properties has opened up new avenues for developing pharmaceutical and dietary strategies to prevent atherosclerosis. However, the effect of the antioxidant Dendrobium officinale polysaccharide (DOP) on atherosclerosis is still not elucidated. PURPOSE: This study aims to investigate the inhibitory effect and the potential mechanism of DOP on high-fat diet-induced atherosclerosis in Apolipoprotein E knockout (ApoE-/-) mice. STUDY DESIGN AND METHODS: The identification of DOP was measured by high-performance gel permeation chromatography (HPLC) and Fourier transform infrared spectroscopy (FTIR). We used high-fat diet (HFD)-induced atherosclerosis in ApoE-/- mice as an animal model. In the DOP intervention stage, the DOP group was treated by gavage with 200 µL of 200 mg/kg DOP at regular times each day and continued for eight weeks. We detected changes in serum lipid profiles, inflammatory factors, anti-inflammatory factors, and antioxidant capacity to investigate the effect of the DOP on host metabolism. We also determined microbial composition using 16S rRNA gene sequencing to investigate whether the DOP could improve the structure of the gut microbiota in atherosclerotic mice. RESULTS: DOP effectively inhibited histopathological deterioration in atherosclerotic mice and significantly reduced serum lipid levels, inflammatory factors, and malondialdehyde (F/B) production. Additionally, the levels of anti-inflammatory factors and the activity of antioxidant enzymes, including superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX), were significantly increased after DOP intervention. Furthermore, we found that DOP restructures the gut microbiota composition by decreasing the Firmicutes/Bacteroidota (F/B) ratio. The Spearman's correlation analysis indicated that serum lipid profiles, antioxidant activity, and pro-/anti-inflammatory factors were associated with Firmicutes, Bacteroidota, Allobaculum, and Coriobacteriaceae_UCG-002. CONCLUSIONS: This study suggests that DOP has the potential to be developed as a food prebiotic for the treatment of atherosclerosis in the future.
RESUMO
BACKGROUND: Uncertainties still existed about the effect of high-quality protein supplementation on cardiovascular disease (CVD) risk factors, although high-quality proteins such as soy and milk proteins have proposed to be beneficial for cardiometabolic health. METHODS: A systematic search in PubMed, Web of Science, Cochrane Library, Scopus, and Embase was conducted to quantify the impact of high-quality protein on CVD risk factors. RESULTS: 63 RCTs on 4 types of high-quality protein including soy protein, milk protein, whey, and casein were evaluated. Soy protein supplementation decreased systolic blood pressure (SBP, -1.42 [-2.68, -0.17] mmHg), total cholesterol (TC, -0.18 [-0.30, -0.07] mmol/L), and low-density lipoprotein cholesterol (LDL-C, -0.16 [-0.27, -0.05] mmol/L). Milk protein supplementation decreased SBP (-2.30 [-3.45, -1.15] mmHg) and total cholesterol (-0.27 [-0.51, -0.03] mmol/L). Whey supplementation decreased SBP (-2.20 [-3.89, -0.51] mmHg), diastolic blood pressure (DBP, -1.07 [-1.98, -0.16] mmHg), triglycerides (-0.10 [-0.17, -0.03] mmol/L), TC (-0.18 [-0.35, -0.01] mmol/L), LDL-C (-0.09 [-0.16, -0.01] mmol/L) and fasting blood insulin (FBI, -2.02 [-3.75, -0.29] pmol/L). Casein supplementation decreased SBP (-4.10 [-8.05, -0.14] mmHg). In the pooled analysis of four high-quality proteins, differential effects were seen in individuals with different health status. In hypertensive individuals, high-quality proteins decreased both SBP (-2.69 [-3.50, -1.87] mmHg) and DBP (-1.34 [-2.09, -0.60] mmHg). In overweight/obese individuals, high-quality proteins improved SBP (-1.40 [-2.22, -0.59] mmHg), DBP (-2.59 [-3.20, -1.98] mmHg), triglycerides (-0.09 [-0.15, -0.02] mmol/L), TC (-0.14 [-0.22, -0.05] mmol/L), LDL-C (-0.12 [-0.16, -0.07] mmol/L), and HDL-C levels (0.02 [0.01, 0.04] mmol/L). According to the benefits on CVD risks factors, whey ranked top for improving cardiometabolic health in hypertensive or overweight/obese individuals. CONCLUSION: Our study supports a beneficial role of high-quality protein supplementation to reduce CVD risk factors. Further studies are still warranted to investigate the effects of different high-quality proteins on CVD risks in individuals with cardiometabolic disorders.