Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 27(32): 324005, 2016 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-27363480

RESUMO

Monochromatic radiation with known absolute radiant power from an undulator at the electron storage ring Metrology Light Source (MLS) was used to irradiate PTB7 (a thieno[3, 4-b]thiophene-alt-benzodithiophene polymer) thin films at wavelengths (photon energies) of 185 nm (6.70 eV), 220 nm (5.64 eV), 300 nm (4.13 eV), 320 nm (3.88 eV), 356 nm (3.48 eV) and 675 nm (1.84 eV) under ultra-high vacuum conditions for the investigation of radiation-induced degradation effects. The characterization of the thin films is focused at ultraviolet photoelectron spectroscopy (UPS) of valence bands and is complemented by S 2p x-ray photoelectron spectroscopy (S 2p XPS) before and after the irradiation procedure. The radiant exposure was determined for each irradiation by means of photodiodes traceably calibrated to the international system of units SI. The valence band spectra show the strongest changes for the shortest wavelengths and no degradation effect at 356 nm and 675 nm even with the highest radiant exposure applied. In the spectral range where the Sun appears bright on the Earth's surface, no degradation effects are observed.

2.
J Chem Phys ; 122(2): 024312, 2005 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-15638591

RESUMO

Selective optimization of the 39,39K2 and 39,41K2 isotopomers in a three-photon ionization process is presented by applying evolution strategies on shaped fs pulses in a feedback loop. The optimizations at different center wavelengths show considerably large enhancements of one isotope compared to the other and reversed. We compare the acquired optimized pulse shapes for combined phase and amplitude with pure amplitude modulation. Particularly from their spectra we are able to extract information about the optimally chosen differing ionization paths via the involved vibrational states. Furthermore, a comparison of the temporal shape of the optimized pulse forms for combined phase and amplitude with pure phase optimization is given. The presented pulse form analysis demonstrates the potential of restricted optimization to gain insight into the underlying dynamical processes. Our approach reveals how the optimization algorithm precisely addresses the vibrational wave functions both spectrally and temporally.

3.
Science ; 299(5606): 536-9, 2003 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-12543966

RESUMO

Femtosecond high-resolution pump-probe experiments have been used together with theoretical ab initio quantum calculations and wave packet dynamics simulations to decode an optimal femtosecond pulse that is generated from adaptive learning algorithms. This pulse is designed to maximize the yield of the organometallic ion CpMn(CO)3 while hindering the competing fragmentation. The sequential excitation and ionization of the target ion are accomplished by an optimized field consisting of two dominant subpulses with optimal frequencies and time delays.

4.
Phys Rev Lett ; 93(3): 033001, 2004 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-15323818

RESUMO

We report on selective optimization of different isotopes in an ionization process by means of spectrally broad shaped fs-laser pulses. This is demonstrated for (39,39)K2 and (39,41)K2 by applying evolution strategies in a feedback loop, whereby a surprisingly high enhancement of one isotope versus the other and vice versa is achieved (total factor approximately 140). Information about the dynamics on the involved vibrational states is extracted from the optimal pulse shapes, which provides a new spectroscopical approach of yielding distinct frequency pattern on fs-time scales. The method should, in principle, be feasible for all molecules.

5.
Phys Rev Lett ; 89(21): 213404, 2002 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-12443410

RESUMO

We present two-color fs pump-probe spectra of Na2F which were recorded by employing excitation wavelengths around 1208 nm (pump) and ionization wavelengths around 405 nm (probe). The observed oscillatory structure of the signal with a period of 185 fs shows an excellent agreement with our simulated spectra. The employed ab initio Wigner distribution approach provides clear evidence that this observation is caused by photoinduced metal bond breaking followed by a butterfly-type periodic geometric rearrangement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA