Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Stroke ; 33(12): 3006-11, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12468804

RESUMO

BACKGROUND AND PURPOSE: After focal cerebral ischemia, depending on its localization and extent, secondary neuronal damage may occur that is remote from the initial lesion. In this study differences in secondary damage of the ventroposterior thalamic nucleus (VPN) and the reticular thalamic nucleus (RTN) were investigated with the use of different ischemia models. METHODS: Transient middle cerebral artery occlusion (MCAO) leads to cortical infarction, including parts of the basal ganglia such as the globus pallidus, and to widespread edema. Photothrombotic ischemia generates pure cortical infarcts sparing the basal ganglia and with only minor edema. Neuronal degeneration was quantified within the ipsilateral RTN and VPN 14 days after ischemia. Glial reactions were studied with the use of immunohistochemistry. RESULTS: MCAO resulted in delayed neuronal cell loss of the ipsilateral VPN and RTN. Glial activation occurred in both nuclei beginning after 24 hours. Photothrombotic ischemia resulted in delayed neuronal cell loss only within the VPN. Even 2 weeks after photothrombotic ischemia, glial activation could only be seen within the VPN. CONCLUSIONS: Pure cortical infarcts after photothrombotic ischemia, without major edema and without effects on the globus pallidus of the basal ganglia, only lead to secondary VPN damage that is possibly due to retrograde degeneration. MCAO, which results in infarction of cortex and globus pallidus and which causes widespread edema, leads to secondary damage in the VPN and RTN. Thus, additional RTN damage may be due to loss of protective GABAergic input from the globus pallidus to the RTN or due to the extensive edema. Retrograde degeneration is not possible because the RTN, in contrast to the VPN, has no efferents to the cortex.


Assuntos
Isquemia Encefálica/patologia , Infarto da Artéria Cerebral Média/patologia , Neurônios/patologia , Núcleos Talâmicos/irrigação sanguínea , Núcleos Talâmicos/patologia , Animais , Gânglios da Base/irrigação sanguínea , Gânglios da Base/patologia , Isquemia Encefálica/etiologia , Contagem de Células , Morte Celular , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/patologia , Modelos Animais de Doenças , Progressão da Doença , Imuno-Histoquímica , Infarto da Artéria Cerebral Média/complicações , Fotocoagulação , Masculino , Neuroglia/patologia , Ratos , Ratos Sprague-Dawley , Tálamo/irrigação sanguínea , Tálamo/patologia , Fatores de Tempo
2.
Brain Res ; 1570: 54-60, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24835408

RESUMO

The purpose of the present study was to determine whether a unilateral photothrombotic brain lesion induces bilateral ischemic tolerance towards a subsequent severe ischemia performed 5 days later. Severe ischemia was induced by transient (1h; t) or permanent (p) occlusion of the middle cerebral artery (MCAO). Rats were sacrificed 24h later. Preconditioning reduced the size of subsequent infarcts in both hemispheres. This effect was most prominent with tMCAO, and ipsilateral preconditioning was more effective than contralateral preconditioning (% of hemispheric volume, mean ± SD: 31.9 ± 3.7 to 19.0 ± 10.3 with ipsilateral tMCAO; 31.9 ± 3.7 to 22.9 ± 4.9 with contralateral tMCAO; 64.7 ± 4.3% to 47.2 ± 12.5% with ipsilateral pMCAO; 64.7 ± 4.3% to 53.1 ± 8.9% with contralateral pMCAO). Ischemic preconditioning was associated with a successive bilateral up-regulation of superoxide dismutases which may be involved in the development of ischemic tolerance. Our data suggest that a focal ischemic brain lesion induces neuroprotective mechanisms in extensive brain areas and thus cause bilateral ischemic tolerance within a certain time window.


Assuntos
Isquemia Encefálica/fisiopatologia , Encéfalo/fisiopatologia , Lateralidade Funcional/fisiologia , Infarto da Artéria Cerebral Média/fisiopatologia , Precondicionamento Isquêmico/métodos , Animais , Encéfalo/patologia , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Imuno-Histoquímica , Infarto da Artéria Cerebral Média/patologia , Masculino , Estimulação Luminosa , Distribuição Aleatória , Ratos Wistar , Índice de Gravidade de Doença , Superóxido Dismutase/metabolismo , Trombose , Regulação para Cima/fisiologia , Redução de Peso
3.
Histochem Cell Biol ; 121(3): 201-7, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14986005

RESUMO

Immunoreactivity of the Na+-D-glucose cotransporter SGLT1 was demonstrated in intracerebral capillaries of rat and pig. Immunostaining suggested that SGLT1 is located in the luminal membrane of the endothelial cells and in intracellular vesicles. Using in situ hybridization, SGLT1 mRNA was not detectable in intracerebral capillaries of non-treated or sham-operated Wistar rats. However, 1 day after a transient occlusion of the right middle cerebral artery, SGLT1 mRNA was detected in capillaries of both brain hemispheres. Expression of SGLT1 was also demonstrated in primary cultures of capillary endothelial cells from pig using polymerase chain reaction after reverse transcription and western blotting. The data suggest that SGLT1 participates in transport of D-glucose across the blood-brain barrier and is upregulated after brain ischemia and reperfusion.


Assuntos
Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Glucose/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Regulação para Cima , Animais , Células Cultivadas , Imuno-Histoquímica , Masculino , Ratos , Ratos Wistar , Transportador 1 de Glucose-Sódio , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA