Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Microsc Microanal ; : 1-15, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33843542

RESUMO

The invention of silicon drift detectors has resulted in an unprecedented improvement in detection efficiency for energy-dispersive X-ray (EDX) spectroscopy in the scanning transmission electron microscope. The result is numerous beautiful atomic-scale maps, which provide insights into the internal structure of a variety of materials. However, the task still remains to understand exactly where the X-ray signal comes from and how accurately it can be quantified. Unfortunately, when crystals are aligned with a low-order zone axis parallel to the incident beam direction, as is necessary for atomic-resolution imaging, the electron beam channels. When the beam becomes localized in this way, the relationship between the concentration of a particular element and its spectroscopic X-ray signal is generally nonlinear. Here, we discuss the combined effect of both spatial integration and sample tilt for ameliorating the effects of channeling and improving the accuracy of EDX quantification. Both simulations and experimental results will be presented for a perovskite-based oxide interface. We examine how the scattering and spreading of the electron beam can lead to erroneous interpretation of interface compositions, and what approaches can be made to improve our understanding of the underlying atomic structure.

2.
Nanotechnology ; 28(43): 435703, 2017 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-28885185

RESUMO

Endohedral lanthanide ions packed inside carbon nanotubes (CNTs) in a one-dimensional assembly have been studied with a combination of high resolution transmission electron microscopy (HRTEM), scanning transmission x-ray microscopy (STXM), and x-ray magnetic circular dichroism (XMCD). By correlating HRTEM and STXM images we show that structures down to 30 nm are resolved with chemical contrast and record x-ray absorption spectra from endohedral lanthanide ions embedded in individual nanoscale CNT bundles. XMCD measurements of an Er3N@C80 bulk sample and a macroscopic assembly of filled CNTs indicate that the magnetic properties of the endohedral Er3+ ions are unchanged when encapsulated in CNTs. This study demonstrates the feasibility of local magnetic x-ray characterisation of low concentrations of lanthanide ions embedded in molecular nanostructures.

3.
Microsc Microanal ; 23(4): 782-793, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28625222

RESUMO

This paper reports on the substantial improvement of specimen quality by use of a low voltage (0.05 to ~1 keV), small diameter (~1 µm), argon ion beam following initial preparation using conventional broad-beam ion milling or focused ion beam. The specimens show significant reductions in the amorphous layer thickness and implanted artifacts. The targeted ion milling controls the specimen thickness according to the needs of advanced aberration-corrected and/or analytical transmission electron microscopy applications.

4.
Angew Chem Int Ed Engl ; 56(34): 10204-10208, 2017 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-28194844

RESUMO

A hexagonal phase in the ternary Ge-Se-Te system with an approximate composition of GeSe0.75 Te0.25 has been known since the 1960s but its structure has remained unknown. We have succeeded in growing single crystals by chemical transport as a prerequisite to solve and refine the Ge4 Se3 Te structure. It consists of layers that are held together by van der Waals type weak chalcogenide-chalcogenide interactions but also display unexpected Ge-Ge contacts, as confirmed by electron microscopy analysis. The nature of the electronic structure of Ge4 Se3 Te was characterized by chemical bonding analysis, in particular by the newly introduced density of energy (DOE) function. The Ge-Ge bonding interactions serve to hold electrons that would otherwise go into antibonding Ge-Te contacts.

5.
Nano Lett ; 12(11): 5559-64, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23030380

RESUMO

We present results about the growth of GaAs/InAs core-shell nanowires (NWs) using molecular beam epitaxy. The core is grown via the Ga droplet-assisted growth mechanism. For a homogeneous growth of the InAs shell, the As(4) flux and substrate temperature are critical. The shell growth starts with InAs islands along the NW core, which increase in time and merge giving finally a continuous and smooth layer. At the top of the NWs, a small part of the core is free of InAs indicating a crystal phase selective growth. This allows a precise measurement of the shell thickness and the fabrication of InAs nanotubes by selective etching. The strain relaxation in the shell occurs mainly via the formation of misfit dislocations and saturates at ~80%. Additionally, other types of defects are observed, namely stacking faults transferred from the core or formed in the shell, and threading dislocations.

6.
Nanomaterials (Basel) ; 13(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36678107

RESUMO

Quasi-one-dimensional (1D) topological insulators hold the potential of forming the basis of novel devices in spintronics and quantum computing. While exposure to ambient conditions and conventional fabrication processes are an obstacle to their technological integration, ultra-high vacuum lithography techniques, such as selective area epitaxy (SAE), provide all the necessary ingredients for their refinement into scalable device architectures. In this work, high-quality SAE of quasi-1D topological insulators on templated Si substrates is demonstrated. After identifying the narrow temperature window for selectivity, the flexibility and scalability of this approach is revealed. Compared to planar growth of macroscopic thin films, selectively grown regions are observed to experience enhanced growth rates in the nanostructured templates. Based on these results, a growth model is deduced, which relates device geometry to effective growth rates. After validating the model experimentally for various three-dimensional topological insulators (3D TIs), the crystal quality of selectively grown nanostructures is optimized by tuning the effective growth rates to 5 nm/h. The high quality of selectively grown nanostructures is confirmed through detailed structural characterization via atomically resolved scanning transmission electron microscopy (STEM).

7.
Nat Commun ; 12(1): 754, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33531502

RESUMO

Despite the fact that GeTe is known to be a very interesting material for applications in thermoelectrics and for phase-change memories, the knowledge on its low-temperature transport properties is only limited. We report on phase-coherent phenomena in the magnetotransport of GeTe nanowires. From universal conductance fluctuations measured on GeTe nanowires with Au contacts, a phase-coherence length of about 280 nm at 0.5 K is determined. The distinct phase-coherence is confirmed by the observation of Aharonov-Bohm type oscillations for parallel magnetic fields. We interpret the occurrence of these magnetic flux-periodic oscillations by the formation of a tubular hole accumulation layer. For Nb/GeTe-nanowire/Nb Josephson junctions we obtained a critical current of 0.2 µA at 0.4 K. By applying a perpendicular magnetic field the critical current decreases monotonously with increasing field, whereas in a parallel field the critical current oscillates with a period of the magnetic flux quantum confirming the presence of a tubular hole channel.

8.
Microsc Microanal ; 15(3): 213-21, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19460177

RESUMO

This article presents a (scanning) transmission electron microscopy (TEM) study of Mn valency and its structural origin at La 0.7 Sr 0.3 MnO 3/SrTiO3(0 0 1) thin film interfaces. Mn valency deviations can lead to a breakdown of ferromagnetic order and thus lower the tunneling magnetoresistance of tunnel junctions. Here, at the interface, a Mn valency reduction of 0.16 +/- 0.10 compared to the film interior and an additional feature at the low energy-loss flank of the Mn-L3 line have been observed. The latter may be attributed to an elongation of the (0 0 1) plane spacing at the interface detected by geometrical phase analysis of high-resolution images. Regarding the interface geometry, high-resolution high-angle annular dark-field scanning TEM images reveal an atomically sharp interface in some regions whereas the transition appears broadened in others. This can be explained by the presence of steps. The performed measurements indicate that, among the various structure-related influences on the valency, the atomic layer termination and the local oxygen content are most important.

9.
Sci Rep ; 9(1): 12028, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31427693

RESUMO

Graphene quantum dots (GQDs) are a promising next generation nanomaterial with manifold biomedical applications. For real world applications, comprehensive studies on their influence on the functionality of primary human cells are mandatory. Here, we report the effects of GQDs on the transcriptome of CD34+ hematopoietic stem cells after an incubation time of 36 hours. Of the 20 800 recorded gene expressions, only one, namely the selenoprotein W, 1, is changed by the GQDs in direct comparison to CD34+ hematopoietic stem cells cultivated without GQDs. Only a meta analysis reveals that the expression of 1171 genes is weakly affected, taking into account the more prominent changes just by the cell culture. Eight corresponding, weakly affected signaling pathways are identified, which include, but are not limited to, the triggering of apoptosis. These results suggest that GQDs with sizes in the range of a few nanometers hardly influence the CD34+ cells on the transcriptome level after 36 h of incubation, thereby demonstrating their high usability for in vivo studies, such as fluorescence labeling or delivery protocols, without strong effects on the functional status of the cells.


Assuntos
Regulação da Expressão Gênica , Grafite , Células-Tronco Hematopoéticas/metabolismo , Pontos Quânticos , Antígenos CD34/metabolismo , Apoptose/genética , Materiais Biocompatíveis , Sobrevivência Celular , Perfilação da Expressão Gênica , Humanos , Nanoestruturas , Transcriptoma
10.
Nat Nanotechnol ; 14(9): 825-831, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31358942

RESUMO

The interplay of Dirac physics and induced superconductivity at the interface of a 3D topological insulator (TI) with an s-wave superconductor (S) provides a new platform for topologically protected quantum computation based on elusive Majorana modes. To employ such S-TI hybrid devices in future topological quantum computation architectures, a process is required that allows for device fabrication under ultrahigh vacuum conditions. Here, we report on the selective area growth of (Bi,Sb)2Te3 TI thin films and stencil lithography of superconductive Nb for a full in situ fabrication of S-TI hybrid devices via molecular-beam epitaxy. A dielectric capping layer was deposited as a final step to protect the delicate surfaces of the S-TI hybrids at ambient conditions. Transport experiments in as-prepared Josephson junctions show highly transparent S-TI interfaces and a missing first Shapiro step, which indicates the presence of Majorana bound states. To move from single junctions towards complex circuitry for future topological quantum computation architectures, we monolithically integrated two aligned hardmasks to the substrate prior to growth. The presented process provides new possibilities to deliberately combine delicate quantum materials in situ at the nanoscale.

11.
ACS Appl Mater Interfaces ; 10(24): 20661-20671, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29888585

RESUMO

The influence of the composition within multilayered heterostructure oxide semiconductors has a critical impact on the performance of thin-film transistor (TFT) devices. The heterostructures, comprising alternating polycrystalline indium oxide and zinc oxide layers, are fabricated by a facile atomic layer deposition (ALD) process, enabling the tuning of its electrical properties by precisely controlling the thickness of the individual layers. This subsequently results in enhanced TFT performance for the optimized stacked architecture after mild thermal annealing at temperatures as low as 200 °C. Superior transistor characteristics, resulting in an average field-effect mobility (µsat.) of 9.3 cm2 V-1 s-1 ( W/ L = 500), an on/off ratio ( Ion/ Ioff) of 5.3 × 109, and a subthreshold swing of 162 mV dec-1, combined with excellent long-term and bias stress stability are thus demonstrated. Moreover, the inherent semiconducting mechanism in such multilayered heterostructures can be conveniently tuned by controlling the thickness of the individual layers. Herein, devices comprising a higher In2O3/ZnO ratio, based on individual layer thicknesses, are predominantly governed by percolation conduction with temperature-independent charge carrier mobility. Careful adjustment of the individual oxide layer thicknesses in devices composed of stacked layers plays a vital role in the reduction of trap states, both interfacial and bulk, which consequently deteriorates the overall device performance. The findings enable an improved understanding of the correlation between TFT performance and the respective thin-film composition in ALD-based heterostructure oxides.

12.
Nanoscale ; 10(38): 18153-18160, 2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-30132489

RESUMO

The magnetic ordering and bistability of one-dimensional chains of endofullerene Dy2ScN@C80 single-molecule magnets (SMMs) packed inside single-walled carbon nanotubes (SWCNTs) have been studied using high-resolution transmission electron microscopy (HRTEM), X-ray magnetic circular dichroism (XMCD), and ab initio calculations. X-ray absorption measurements reveal that the orientation of the encapsulated endofullerenes differs from the isotropic distribution in the bulk sample, indicating a partial ordering of the endofullerenes inside the SWCNTs. The effect of the one-dimensional packing was further investigated by ab initio calculations, demonstrating that for specific tube diameters, the encapsulation is leading to energetically preferential orientations of the endohedral clusters. Additionally, element-specific magnetization curves reveal a decreased magnetic bistability of the encapsulated Dy2ScN@C80 SMMs compared to the bulk analog.

13.
Ultrason Sonochem ; 39: 883-888, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28733019

RESUMO

Silicon nanoparticles (Si-NPs) are increasing in relevance in diverse fields of scientific and nanotechnological inquiry, where currently some of the most important areas of research involve energy storage and biomedical applications. The present article is concerned with a curious and scalable method for the preparation of discrete, unoxidized, hydrogenated, and amorphous Si-NPs of tunable size in the range of 1.5-50nm. Using ultrasound generated with a conventional ultrasonic horn, the "fusion" of Si-NPs is demonstrated at ambient temperature and pressure by sonicating solutions containing readily available, semiconductor-grade purity trisilane (Si3H8). The only requirement for the synthesis is that it be carried out in an inert atmosphere such as that of a N2-filled glove box. Various spectroscopic techniques and electron microscopy images are used to show that the size of the Si-NPs can be controlled by varying the amplitude of the ultrasonic waves or the concentration of trisilane in the solution. Moreover, sustained ultrasonic irradiation is found to yield highly porous Si-NP agglomerates that may find use in applications requiring non-crystalline nanoscopic high specific surface area morphologies.

14.
Nat Commun ; 8: 14976, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28429708

RESUMO

New three-dimensional (3D) topological phases can emerge in superlattices containing constituents of known two-dimensional topologies. Here we demonstrate that stoichiometric Bi1Te1, which is a natural superlattice of alternating two Bi2Te3 quintuple layers and one Bi bilayer, is a dual 3D topological insulator where a weak topological insulator phase and topological crystalline insulator phase appear simultaneously. By density functional theory, we find indices (0;001) and a non-zero mirror Chern number. We have synthesized Bi1Te1 by molecular beam epitaxy and found evidence for its topological crystalline and weak topological character by spin- and angle-resolved photoemission spectroscopy. The dual topology opens the possibility to gap the differently protected metallic surface states on different surfaces independently by breaking the respective symmetries, for example, by magnetic field on one surface and by strain on another surface.

15.
Nat Commun ; 6: 8816, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26572278

RESUMO

Three-dimensional (3D) topological insulators are a new state of quantum matter, which exhibits both a bulk band structure with an insulating energy gap as well as metallic spin-polarized Dirac fermion states when interfaced with a topologically trivial material. There have been various attempts to tune the Dirac point to a desired energetic position for exploring its unusual quantum properties. Here we show a direct experimental proof by angle-resolved photoemission of the realization of a vertical topological p-n junction made of a heterostructure of two different binary 3D TI materials Bi2Te3 and Sb2Te3 epitaxially grown on Si(111). We demonstrate that the chemical potential is tunable by about 200 meV when decreasing the upper Sb2Te3 layer thickness from 25 to 6 quintuple layers without applying any external bias. These results make it realistic to observe the topological exciton condensate and pave the way for exploring other exotic quantum phenomena in the near future.

16.
ACS Nano ; 8(3): 2290-301, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24575876

RESUMO

An appropriate way of realizing property nanoengineering in complex quaternary chalcogenide nanocrystals is presented for Cu2CdxSnSey(CCTSe) polypods. The pivotal role of the polarity in determining morphology, growth, and the polytypic branching mechanism is demonstrated. Polarity is considered to be responsible for the formation of an initial seed that takes the form of a tetrahedron with four cation-polar facets. Size and shape confinement of the intermediate pentatetrahedral seed is also attributed to polarity, as their external facets are anion-polar. The final polypod extensions also branch out as a result of a cation-polarity-driven mechanism. Aberration-corrected scanning transmission electron microscopy is used to identify stannite cation ordering, while ab initio studies are used to show the influence of cation ordering/distortion, stoichiometry, and polytypic structural change on the electronic band structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA