Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Front Physiol ; 13: 822073, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431992

RESUMO

Male house mice excrete large amounts of protein in their urinary scent marks, mainly composed of Major Urinary Proteins (MUPs), and these lipocalins function as pheromones and pheromone carriers. Here, we review studies on sexually dimorphic MUP expression in house mice, including the proximate mechanisms controlling MUP gene expression and their adaptive functions. Males excrete 2 to 8 times more urinary protein than females, though there is enormous variation in gene expression across loci in both sexes. MUP expression is dynamically regulated depending upon a variety of factors. Males regulate MUP expression according to social status, whereas females do not, and males regulate expression depending upon health and condition. Male-biased MUP expression is regulated by pituitary secretion of growth hormone (GH), which binds receptors in the liver, activating the JAK2-STAT5 signaling pathway, chromatin accessibility, and MUP gene transcription. Pulsatile male GH secretion is feminized by several factors, including caloric restriction, microbiota depletion, and aging, which helps explain condition-dependent MUP expression. If MUP production has sex-specific fitness optima, then this should generate sexual antagonism over allelic expression (intra-locus sexual conflict) selectively favoring sexually dimorphic expression. MUPs influence the sexual attractiveness of male urinary odor and increased urinary protein excretion is correlated with the reproductive success of males but not females. This finding could explain the selective maintenance of sexually dimorphic MUP expression. Producing MUPs entails energetic costs, but increased excretion may reduce the net energetic costs and predation risks from male scent marking as well as prolong the release of chemical signals. MUPs may also provide physiological benefits, including regulating metabolic rate and toxin removal, which may have sex-specific effects on survival. A phylogenetic analysis on the origins of male-biased MUP gene expression in Mus musculus suggests that this sexual dimorphism evolved by increasing male MUP expression rather than reducing female expression.

2.
Mol Ecol ; 20(11): 2403-24, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21521395

RESUMO

Behavioural isolation may lead to complete speciation when partial postzygotic isolation acts in the presence of divergent-specific mate-recognition systems. These conditions exist where Mus musculus musculus and M. m. domesticus come into contact and hybridize. We studied two mate-recognition signal systems, based on urinary and salivary proteins, across a Central European portion of the mouse hybrid zone. Introgression of the genomic regions responsible for these signals: the major urinary proteins (MUPs) and androgen binding proteins (ABPs), respectively, was compared to introgression at loci assumed to be nearly neutral and those under selection against hybridization. The preference of individuals taken from across the zone regarding these signals was measured in Y mazes, and we develop a model for the analysis of the transition of such traits under reinforcement selection. The strongest assortative preferences were found in males for urine and females for ABP. Clinal analyses confirm nearly neutral introgression of an Abp locus and two loci closely linked to the Abp gene cluster, whereas two markers flanking the Mup gene region reveal unexpected introgression. Geographic change in the preference traits matches our reinforcement selection model significantly better than standard cline models. Our study confirms that behavioural barriers are important components of reproductive isolation between the house mouse subspecies.


Assuntos
Hibridização Genética , Reforço Psicológico , Seleção Genética , Alelos , Animais , Comportamento Animal , Cromossomos de Mamíferos/genética , Europa (Continente) , Feminino , Loci Gênicos/genética , Marcadores Genéticos , Geografia , Funções Verossimilhança , Masculino , Camundongos , Modelos Genéticos
3.
Sci Rep ; 11(1): 21970, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34754031

RESUMO

The major urinary proteins (MUPs) of house mice (Mus musculus) bind and stabilize the release of pheromones and other volatile organic compounds (VOCs) from urinary scent marks, which mediate chemical communication. Social status influences MUP and VOC excretion, and the urinary scent of dominant males is attractive to females. Urinary pheromones influence the sexual behavior and physiology of conspecifics, and yet it is not known whether they also affect reproductive success. We monitored the excretion of urinary protein and VOCs of wild-derived house mice living in large seminatural enclosures to compare the sexes and to test how these compounds correlate with reproductive success. Among males, urinary protein concentration and VOC expression correlated with reproductive success and social status. Territorial dominance also correlated with reproductive success in both sexes; but among females, no urinary compounds were found to correlate with social status or reproductive success. We found several differences in the urinary protein and volatile pheromones of mice in standard cages versus seminatural enclosures, which raises caveats for conventional laboratory studies. These findings provide novel evidence for chemical signals that correlate with male reproductive success of house mice living in competitive conditions.


Assuntos
Feromônios/fisiologia , Reprodução/fisiologia , Comunicação Animal , Animais , Comportamento Animal , Feminino , Masculino , Camundongos , Urinálise , Compostos Orgânicos Voláteis/análise
4.
Mol Biosyst ; 12(10): 3005-16, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27464909

RESUMO

Major urinary proteins (MUPs) are highly homologous proteoforms that function in binding, transporting and releasing pheromones in house mice. The main analytical challenge for studying variation in MUPs, even for state-of-the-art proteomics techniques, is their high degree of amino acid sequence homology. In this study we used unique peptides for proteoform-specific identification. We applied different search engines (ProteinPilot™vs. PEAKS®) and protein databases (MUP database vs. SwissProt + unreviewed MUPs), and found that proteoform identification is influenced by addressing background proteins (unregulated urinary proteins, non-MUPs) during the database search. High resolution Q-TOF mass spectrometry was used to identify and precisely quantify the regulation of MUP proteoforms in male mice that were reared in standard housing and then transferred to semi-natural enclosures (within-subject design). By using a designated MUP database we were able to distinguish 19 MUP proteoforms, with A2CEK6 (a Mup11 gene product) being the most abundant based on spectral intensities. We compared three different quantification strategies based on MS1- (from IDA and SWATH™ spectra) and MS2 (SWATH™) data, and the results of these methods were correlated. Furthermore, three data normalization methods were compared and we found that increased statistical significance of fold-changes can be achieved by normalization based on urinary protein concentrations. We show that male mice living in semi-natural enclosures significantly up-regulated some but not all MUPs (differential regulation), e.g., A2ANT6, a Mup6 gene product, was upregulated between 9-fold (MS1) and 13-fold (MS2) using the designated MUP database. Finally, we show that 85 ± 7% of total MS intensity can be attributed to MUP-derived peptides, which supports the assumption that MUPs are the primary proteins in mouse urine. Our results provide new tools for assessing qualitative and quantitative variation of MUPs and suggest that male mice regulate the expression of specific MUP proteoforms, depending upon social conditions.


Assuntos
Proteínas/metabolismo , Proteoma , Proteômica , Sequência de Aminoácidos , Animais , Bases de Dados de Proteínas , Masculino , Camundongos , Família Multigênica , Peptídeos/química , Peptídeos/metabolismo , Isoformas de Proteínas , Proteínas/química , Proteínas/genética , Proteólise , Proteômica/métodos , Homologia de Sequência de Aminoácidos
5.
Sci Rep ; 6: 38378, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27922085

RESUMO

Major urinary proteins (MUPs) are often suggested to be highly polymorphic, and thereby provide unique chemical signatures used for individual and genetic kin recognition; however, studies on MUP variability have been lacking. We surveyed populations of wild house mice (Mus musculus musculus), and examined variation of MUP genes and proteins. We sequenced several Mup genes (9 to 11 loci) and unexpectedly found no inter-individual variation. We also found that microsatellite markers inside the MUP cluster show remarkably low levels of allelic diversity, and significantly lower than the diversity of markers flanking the cluster or other markers in the genome. We found low individual variation in the number and types of MUP proteins using a shotgun proteomic approach, even among mice with variable MUP electrophoretic profiles. We identified gel bands and spots using high-resolution mass spectrometry and discovered that gel-based methods do not separate MUP proteins, and therefore do not provide measures of MUP diversity, as generally assumed. The low diversity and high homology of Mup genes are likely maintained by purifying selection and gene conversion, and our results indicate that the type of selection on MUPs and their adaptive functions need to be re-evaluated.


Assuntos
Alelos , Sequência de Bases , Sequência Conservada , Genoma , Proteínas/genética , Animais , Animais Selvagens , Feminino , Expressão Gênica , Heterozigoto , Masculino , Camundongos , Repetições de Microssatélites , Família Multigênica , Proteínas/classificação , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA