Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36146002

RESUMO

Owing to deformation in the form of the diamond mode with high-energy absorption capacity, origami thin-walled tubes have attracted considerable attention in recent years. Stamping and welding are mainly employed to produce different types of origami thin-walled tubes. The processing defects and geometric asymmetry may be caused by the manufacturing process, which changes the collapsed mode and decreases the energy-absorbing capacity. In this study, fused filament fabrication (FFF) 3D printing is used to fabricate the origami-ending tube (OET) by integrated formation. Experiments and numerical simulations were conducted to study the influence of loading rate and temperature on the energy absorption of polymeric origami tubes under quasi-static loading. The experiments showed that different constitutive models are needed to capture the complex true stress-strain behavior of 3D printing polylactic acid (PLA) material at different temperatures. The damage model is established and then applied to the numerical simulations, which could predict the collapsed mode and the damage behavior of the OET tubes under different loading rates at 30 °C, 40 °C, and 50 °C. Based on the experiments and the validated numerical model, the influence of loading rate and temperature on the crashworthiness performance of the OET tubes is analyzed.

2.
ACS Appl Mater Interfaces ; 5(2): 386-94, 2013 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-23259485

RESUMO

Optical biosensing techniques have become of key importance for label-free monitoring of biomolecular interactions in the current proteomics era. Together with an increasing emphasis on high-throughput applications in functional proteomics and drug discovery, there has been demand for facile and generally applicable methods for the immobilization of a wide range of receptor proteins. Here, we developed a polymer platform for microring resonator biosensors, which allows the immobilization of receptor proteins on the surface of waveguide directly without any additional modification. A sol-gel process based on a mixture of three precursors was employed to prepare a liquid hybrid polysiloxane, which was photopatternable for the photocuring process and UV imprint. Waveguide films were prepared on silicon substrates by spin coating and characterized by atomic force microscopy for roughness, and protein adsorption. The results showed that the surface of the polymer film was smooth (rms = 0.658 nm), and exhibited a moderate hydrophobicity with the water contact angle of 97°. Such a hydrophobic extent could provide a necessary binding strength for stable immobilization of proteins on the material surface in various sensing conditions. Biological activity of the immobilized Staphylococcal protein A and its corresponding biosensing performance were demonstrated by its specific recognition of human Immunoglobulin G. This study showed the potential of preparing dense, homogeneous, specific, and stable biosensing surfaces by immobilizing receptor proteins on polymer-based optical devices through the direct physical adsorption method. We expect that such polymer waveguide could be of special interest in developing low-cost and robust optical biosensing platform for multidimensional arrays.


Assuntos
Técnicas Biossensoriais/instrumentação , Proteínas Imobilizadas/química , Imunoglobulina G/química , Polímeros/química , Silício/química , Proteína Estafilocócica A/química , Adsorção , Humanos , Dispositivos Ópticos , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA