Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Macromol Rapid Commun ; 44(21): e2300374, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37616581

RESUMO

The utilization of accelerators has been a common approach to prepare low-temperature curable polyimide (PI). However, the accelerators have gradually fallen out of favor because of their excessive dosages and negative effect on the properties of PI. In this work, a new strategy of introducing accelerators by grafting to eliminate these disadvantages is presented. A novel quinoline derivative named 6-([1,1'-biphenyl]-4-yl)-4-chloroquinoline (NQL) is designed for this purpose, and an ultralow dosage of only 2.5 mol% is sufficient to prepare low-temperature curable PI. The favorable low-temperature curing effect of NQL is attributed to its strong alkalinity (pKa = 18.47) and electron-donating ability. At a curing temperature of 200 °C, the PI with 2.5 mol% NQL showed outstanding properties (Young's modulus of 5.73 GPa, elongation of 37.3%, tensile strength of 237 MPa, and coefficient of thermal expansion of 16 ppm K-1 ). In particular, NQL can even lower the curing temperature to 180 °C and the ultralow temperature curable PI film still retains excellent properties. These results demonstrate that introducing low-temperature curable accelerators by partial grafting instead of blending is a promising way to furnish low-temperature curable PI, and provide insights into the preparation of polyimide with high performance in advanced packaging.


Assuntos
Temperatura Baixa , Quinolinas , Temperatura , Módulo de Elasticidade , Elétrons
2.
J Am Chem Soc ; 144(50): 22976-22984, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36475679

RESUMO

Multiresonance thermal activated delayed fluorescence (MR-TADF) materials with an efficient spin-flip transition between singlet and triplet excited states remain demanding. Herein, we report an MR-TADF compound (BN-Se) simultaneously possessing efficient (reverse) intersystem crossing (ISC/RISC), fast radiative decay, close-to-unity quantum yield, and narrowband emission by embedding a single selenium atom into a common 4,4'-diazaborin framework. Benefitting from the high RISC efficiency accelerated by the heavy-atom effect, organic light-emitting diodes (OLEDs) based on BN-Se manifest excellent performance with an external quantum efficiency of up to 32.6% and an ultralow efficiency roll-off of 1.3% at 1000 cd m-2. Furthermore, the high ISC efficiency and small inherent energy loss also render BN-Se a superior photosensitizer to realize the first example of visible (λex > 450 nm)-to-UV (λem < 350 nm) triplet-triplet annihilation upconversion, with a high efficiency (21.4%) and an extremely low threshold intensity (1.3 mW cm-2). This work not only aids in designing advanced pure organic molecules with fast exciton dynamics but also highlights the value of MR-TADF compounds beyond OLED applications.

3.
Angew Chem Int Ed Engl ; 61(30): e202202227, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35536020

RESUMO

Highly efficient circularly polarized luminescence (CPL) emitters with narrowband emission remain a formidable challenge for circularly polarized OLEDs (CP-OLEDs). Here, a promising strategy for developing chiral emitters concurrently featuring multi-resonance thermally activated delayed fluorescence (MR-TADF) and circularly polarized electroluminescence (CPEL) is demonstrated by the integration of molecular rigidity, central chirality and MR effect. A pair of chiral green emitters denoted as (R)-BN-MeIAc and (S)-BN-MeIAc is designed. Benefited by the rigid and quasi-planar MR-framework, the enantiomers not only display mirror-image CPL spectra, but also exhibit TADF properties with a high photoluminescence quantum yield of 96 %, a narrow FWHM of 30 nm, and a high horizontal dipole orientation of 90 % in the doped film. Consequently, the enantiomer-based CP-OLEDs achieved excellent external quantum efficiencies of 37.2 % with very low efficiency roll-off, representing the highest device efficiency of all the reported CP-OLEDs.

4.
Angew Chem Int Ed Engl ; 61(29): e202201588, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35536106

RESUMO

Multi-resonance TADF (MR-TADF) emitters are promising for high-resolution OLEDs, but the concurrent optimization of excited-state dynamics and color purity remains a tough challenge. Herein, three deep-blue MR-TADF compounds (BN1-BN3) featuring gradually enlarged ring-fused structures and increased rigidity are accessed by lithium-free borylation in high yields from the same precursor, with all the emitters possessing CIEy coordinates below 0.08. Structure-property investigations demonstrate a strategic improvement of the oscillator strength (fosc ) and acceleration of the reverse intersystem crossing (RISC) process by extending the π-skeleton, where BN3 realizes a maximum external quantum efficiency (EQE) of 37.6 % and reduced roll-off, thus showing the best efficiency reported for deep-blue TADF OLEDs. The internal regulation of the efficiency and color purity of these compounds validate the general effectiveness to achieve advanced deep-blue narrowband emitters with higher-order boron/nitrogen-based MR motifs.

5.
Molecules ; 26(4)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672662

RESUMO

A new series of tetrahedral heteroleptic copper(I) complexes exhibiting efficient thermally-activated delayed fluorescence (TADF) in green to orange electromagnetic spectral regions has been developed by using D-A type N^N ligand and P^P ligands. Their structures, electrochemical, photophysical, and electroluminescence properties have been characterized. The complexes exhibit high photoluminescence quantum yields (PLQYs) of up to 0.71 at room temperature in doped film and the lifetimes are in a wide range of 4.3-24.1 µs. Density functional theory (DFT) calculations on the complexes reveal the lowest-lying intraligand charge-transfer excited states that are localized on the N^N ligands. Solution-processed organic light emitting diodes (OLEDs) based on one of the new emitters show a maximum external quantum efficiency (EQE) of 7.96%.


Assuntos
Complexos de Coordenação/química , Cobre/química , Corantes Fluorescentes/química , Teoria Quântica , Temperatura , Ligantes , Estrutura Molecular , Soluções
6.
Molecules ; 26(17)2021 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-34500677

RESUMO

In this work, we demonstrate dibenzothiophene sulfoximine derivatives as building blocks for constructing emitters featuring both thermally activated delayed fluorescent (TADF) and aggregation-induced emission (AIE) properties, with multiple advantages including high chemical and thermal stability, facile functionalization, as well as tunable electron-accepting ability. A series of phenoxazine-dibenzothiophene sulfoximine structured TADF emitters were successfully synthesized and their photophysical and electroluminescent properties were evaluated. The electroluminescence devices based on these emitters displayed diverse emissions from yellow to orange and reached external quantum efficiencies (EQEs) of 5.8% with 16.7% efficiency roll-off at a high brightness of 1000 cd·m-2.

7.
Plant Dis ; 104(7): 2005-2013, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32441580

RESUMO

Black point is a common disease in wheat all over the world. The disease could downgrade wheat quality and cause human health problems. In this study, 406 wheat cultivars were used to investigate black point resistance. In the field tests, 20, 65.5, and 14.5% of the tested cultivars were resistant, moderately resistant, and susceptible, respectively, suggesting that improving black point resistance is necessary in Chinese wheat breeding. A genome-wide association study (GWAS) identified 386 single-nucleotide polymorphisms (SNPs) significantly related to black point resistance in the tested wheat cultivars, and they were located on all chromosomes. Linkage mapping in a biparental population identified three quantitative trait loci (QTL) for black point resistance-QBP.hau-3A, QBP.hau-6D, and QBP.hau-7D-with 6.76, 7.79, and 8.84% phenotypic variation explained, respectively. Based on both the GWAS and linkage analyses, QBP.hau-6D covered six significant SNPs from the GWAS, and the position of these SNPs indicated that this QTL is a new locus for black point resistance. This study provides valuable germplasm for breeding wheat cultivars with resistance to black point and information for further understanding of molecular and genetic basis of black point resistance.


Assuntos
Estudo de Associação Genômica Ampla , Triticum/genética , Mapeamento Cromossômico , Resistência à Doença , Humanos , Doenças das Plantas
8.
Plant Dis ; 104(6): 1662-1667, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32324096

RESUMO

Sharp eyespot, caused by Rhizoctonia cerealis, has become one of the most severe diseases affecting global wheat production in recent decades. Quick and efficient screening methods are required to accelerate the development of cultivars for sharp eyespot resistance in wheat breeding. Here, a two-step colonized wheat kernels (TSCWK) method for the inoculation and classification of sharp eyespot resistance in seedlings was established in a greenhouse. After preliminary verification of the reliability of the method in two replicates, 196 wheat cultivars were assessed for sharp eyespot resistance, and significant correlations were identified among the four replicates (r = 0.78 to 0.84; P < 0.01). Furthermore, the 196 cultivars were scored for sharp eyespot resistance at the milk-ripe stage using traditional toothpick inoculation in the field. Correlation and linear regression analysis showed that the application of this approach at the seedling stage showed good consistency with the traditional field method. Moreover, the scoring of 442 cultivars using the TSCWK method indicated that most cultivars from the Huanghuai valley were susceptible to R. cerealis, suggesting an urgent need to improve sharp eyespot resistance in this region. Additionally, the relative resistance index of sharp eyespot decreased in the surveyed cultivars of the region with time. This study offers a rapid and effective approach for the identification of wheat sharp eyespot resistance and provides valuable germplasm for improving sharp eyespot resistance in wheat breeding.


Assuntos
Plântula , Triticum , Doenças das Plantas , Reprodutibilidade dos Testes , Rhizoctonia
9.
Natl Sci Rev ; 11(6): nwae115, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38707202

RESUMO

Multi-boron-embedded multiple resonance thermally activated delayed fluorescence (MR-TADF) emitters show promise for achieving both high color-purity emission and high exciton utilization efficiency. However, their development is often impeded by a limited synthetic scope and excessive molecular weights, which challenge material acquisition and organic light-emitting diode (OLED) fabrication by vacuum deposition. Herein, we put forward a B‒N covalent bond-involved π-extension strategy via post-functionalization of MR frameworks, leading to the generation of high-order B/N-based motifs. The structurally and electronically extended π-system not only enhances molecular rigidity to narrow emission linewidth but also promotes reverse intersystem crossing to mitigate efficiency roll-off. As illustrated examples, ultra-narrowband sky-blue emitters (full-width at half-maximum as small as 8 nm in n-hexane) have been developed with multi-dimensional improvement in photophysical properties compared to their precursor emitters, which enables narrowband OLEDs with external quantum efficiencies (EQEmax) of up to 42.6%, in company with alleviated efficiency decline at high brightness, representing the best efficiency reported for single-host OLEDs. The success of these emitters highlights the effectiveness of our molecular design strategy for advanced MR-TADF emitters and confirms their extensive potential in high-performance optoelectronic devices.

10.
Adv Mater ; 36(1): e2308314, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37963185

RESUMO

Helicenes exhibit substantial potential as circularly polarized luminescence (CPL) active molecules. However, their application in circularly polarized organic light-emitting diodes (CP-OLEDs) is typically hindered by the challenge of integrating both high color purity and efficient triplet-harvesting capability, particularly in the blue spectral region. Herein, a series of hetero[6]helicene-based emitters that is strategically engineered through the helical extension of a deep-blue double-boron-based multiple resonance thermally activated delayed fluorescence (MR-TADF) motif, is introduced. Importantly, the helical extension does not cause apparent structural deformation or perturb frontier molecular orbitals; thus, preserving the deep-blue emission and MR-TADF characteristics of the parent molecule. This approach also leads to reduced reorganization energy, resulting in emitters with narrower linewidth and higher photoluminescence quantum yield. Further, the helical motif enhances the racemization barrier and leads to improved CPL performance with luminescence dissymmetry factor values up to 1.5 × 10-3 . Exploiting these merits, devices incorporating the chiral dopants demonstrate deep-blue emission within the Broadcast Service Television 2020 color-gamut range, record external quantum efficiencies (EQEs) up to 29.3%, and have distinctive circularly polarized electroluminescence (CPEL) signals. Overall, the authors' findings underscore the helical extension as a promising strategy for designing narrowband chiroptical materials and advancing high-definition displays.

11.
Adv Mater ; 34(3): e2106954, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34766672

RESUMO

Multiresonance thermally activated delayed fluorescence (MR-TADF) emitters manifest great potential for organic light-emitting diodes (OLEDs) due to their high exciton-utilization efficiency and narrowband emission. Nonetheless, their tendency toward self-quenching caused by strong interchromophore interactions would induce doping sensitivity and deteriorate the device performances, and effective strategy to construct quenching-resistant emitters without sacrifycing color purity is still to be developed. By segregating the planar MR-TADF skeleton using two bulky carbazolyl units, herein a highly emissive molecule with enhanced quenching resistance is reported. The steric effect largely removes the formation of detrimental excimers/aggregates, and boosts the performance of the corresponding devices with a maximum external quantum efficiency (EQEmax ) up to 40.0% and full width at half maximum (FWHM) of 25 nm, representative of the only example of single OLED that can concurrently achieve narrow bandwidth and high EL efficiency surpassing 40% to date. Even at doping ratio of 30 wt%, the EQEmax is retained to be 33.3% with nearly unchanged emission spectrum. This work provides a viable approach to realize doping-insensitive MR-TADF devices with extreme EL efficiency and color purity for high-end OLED displays.

12.
Mater Horiz ; 8(2): 606-611, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34821277

RESUMO

Triplet-triplet annihilation upconversion (TTA-UC) has been widely studied, but a color-tunable TTA-UC system triggered by chemical stimuli has not yet been proposed. Herein, reversible acid/base switching of the TTA-UC emission wavelength is achieved for the first time by a simple platform, composed of a direct singlet-triplet (S0-T1) absorption photosensitizer, and proton-responsive 9,10-di(pyridin-4-yl)anthracene (DPyA) as an acceptor. The photosensitizer-acceptor pair exhibits efficient UC emission (quantum yield up to 3.3%, and anti-Stokes shift up to 0.92 eV) with remarkable contrast upon base/acid treatment (Δλem,max = 82 nm, 0.46 eV). In a proof-of-concept study, the color-adjustable TTA-UC emission was applied as a remote modulator to photo-control reversible chemical reactions for the first time. This platform enriches the portfolio of color-switchable TTA-UC, and the mechanism would inspire further development of smart UC systems and extend the application field of upconversion.


Assuntos
Fármacos Fotossensibilizantes , Isomerismo
13.
ACS Appl Mater Interfaces ; 11(11): 10758-10767, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30793589

RESUMO

A series of blue thermally activated delayed fluorescence (TADF) emitters were designed and synthesized using 2,4,6-triphenyl-1,3,5-triazine as the acceptor unit and indenocarbazole derivatives as the electron-donating moiety. In contrast with other six-membered heterocycles, like phenothiazine, phenoxazine, and dihydroacridine, where the TADF efficiency is affected by the presence of different conformers, indenocarbazole derivatives do not show this effect. Therefore, InCz23FlTz, InCz23DPhTz, InCz23DMeTz, and InCz34DPhTz allow the investigation of the effect of different substituents and substitution positions on TADF properties, without the influence of different conformations. We have demonstrated that the substituted position on the carbazole and different substituents in the same position have clear influence on the donor character of indenocarbazole derivatives. Also, the color purity of blue emission and excited states could be adjusted by substituents and substituted position, and thus excellent blue emitters can be obtained. Besides, the four compounds show relatively small TADF contribution under optical excitation; however, excellent performances are obtained in the electroluminescent devices, especially with InCz34DPhTz, which shows a maximum external quantum efficiency of around 26%. In the end, we find an effective way to design high-efficiency blue TADF materials and deeply study the relation between the structure and property in indenocarbazole derivatives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA