Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Sci Food Agric ; 101(13): 5645-5651, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33740265

RESUMO

BACKGROUND: Esters are indispensable aroma compounds and contribute significantly to the fruity aromas in fermented condiments. The ester synthesis activity and pathways of Bacillus licheniformis, Candida etchellsii, and Zygosaccharomyces rouxii, isolated from Chinese horse bean chili-paste (CHCP), were investigated. Chemical buffer models containing esterification and alcoholysis systems inoculated with extracellular extracts of these three strains were established. RESULTS: The ester synthesis activity of C. etchellsii was stronger than that of the other two strains. Zygosaccharomyces rouxii could synthesize acetate esters via esterification, whereas the biosynthesis pathways of B. licheniformis and C. etchellsii were esterification and alcoholysis. Esterification exhibited relatively high activity at pH 4, whereas alcoholysis activity improved with an increase in the pH from 4 to 8. Candida etchellsii could synthesize C6 -C8 of acetate esters, and its activity improved with the number of alcohol carbon atoms. These three strains could synthesize C10 -C18 of ethyl esters. Their ethyl ester synthesis activity decreased with the aliphatic acid carbon number. CONCLUSION: Candida etchellsii has the potential to be used in CHCP fermentation to accumulate esters and improve flavor compared with the other two strains. This research is helpful in explaining the mechanism of ester synthesis in fermented condiments. © 2021 Society of Chemical Industry.


Assuntos
Bacillus licheniformis/metabolismo , Candida/metabolismo , Ésteres/metabolismo , Aromatizantes/metabolismo , Saccharomycetales/metabolismo , Vicia faba/microbiologia , China , Condimentos/análise , Condimentos/microbiologia , Esterificação , Ésteres/análise , Fermentação , Alimentos Fermentados/análise , Alimentos Fermentados/microbiologia , Aromatizantes/química , Vicia faba/química , Vicia faba/metabolismo
2.
Food Microbiol ; 85: 103309, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31500715

RESUMO

The production of Chinese horse bean-chili-paste (CHCP) involves three fermentation phases: chili-to-moromi fermentation (CF) phase, horse bean-to-meju fermentation (HF) phase and moromi-meju mixed fermentation (MF) phase. To understand the microbial dynamics among these three phases and the potential roles of viable microbes for fermentation, microbial community dynamics was investigated by using culture-dependent and culture-independent methods. Furthermore, the capacities of enzyme-producing of the isolates were determined. During the CF phase, reducing sugar content increased from 3.1% to 3.49%, while pH declined from 4.85 to 4.5. The protein content in the HF phase and MF phase reduced sharply from 22.23% to 10.29% and 4.39%-1.19%, respectively. Bacillus sp., Staphylococcus sp., Oceanobacillus sp., Candida sp., Zygosaccharomyces sp. and Aspergillus sp. dominated the CF phase, while Bacillus sp., Candida sp. and Zygosaccharomyces sp. were the dominant microorganisms in both the HF and MF phases. B. amyloliquefaciens, B. methylotrophicus, B. subtilis, B. licheniformis and A. oryzae possessed strong capacities of producing enzymes, i.e. α-amylase, cellulase and xylanase, acid protease and leucine aminopeptidase, and could make a great contribution to CHCP fermentation.


Assuntos
Bactérias/isolamento & purificação , Fermentação , Microbiologia de Alimentos , Glycine max/microbiologia , Microbiota , Biodiversidade , Capsicum/microbiologia , Células-Tronco , Vicia faba/microbiologia
3.
J Agric Food Chem ; 69(1): 397-403, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33351608

RESUMO

The effect of gallic acid (GA) on the redox state of hemoglobin (Hb) and the structural mechanism upon the Hb-GA interaction were investigated. Results indicated that GA exhibited antioxidant and pro-oxidant effects on Hb, which depended on its concentration and the redox state of Hb. The antioxidant capacity of GA contributed to the inhibition of free iron release from Hb. GA could bind to the central cavity of Hb and interacted with the heme moiety through direct hydrophobic contacts as indicated by docking analysis, but GA did not disrupt the heme structure. Conversely, GA increased the compactness of the Hb molecule and might narrow the crevice around the heme pocket, which contributed to the inhibition of Hb autoxidation and the free iron release. Results provided significant insights into the interaction of GA with redox-active Hb, which is beneficial to the application of GA in relative meat and blood products.


Assuntos
Ácido Gálico/química , Hemoglobinas/química , Hemoglobinas/metabolismo , Animais , Antioxidantes/química , Ácido Gálico/metabolismo , Heme/química , Heme/metabolismo , Carne/análise , Músculos/química , Músculos/metabolismo , Oxirredução , Conformação Proteica em alfa-Hélice , Suínos
4.
J Agric Food Chem ; 69(29): 8065-8080, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34269568

RESUMO

Sodium salt is a pivotal ingredient in traditional fermented foods, but its excessive consumption adversely affects human health, product quality, and production efficiency. Therefore, reducing sodium salt content in traditional fermented foods and developing low-sodium fermented foods have attracted increasing attention. Given the essential role of sodium salt in the safety and quality of fermented foods, appropriate approaches should be applied in the production of low-sodium fermented foods. In this review, the challenges of sodium reduction in traditional fermented foods are presented, including the possible growth of pathogenic bacteria, the formation of hazardous chemicals, flavor deficiency, and texture deterioration. Physical, chemical, and biological strategies are also discussed. This review provides references for improving the quality and safety of low-sodium fermented foods.


Assuntos
Alimentos Fermentados , Bactérias , Fermentação , Humanos , Sódio , Paladar
5.
Food Chem ; 342: 128329, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33060003

RESUMO

Because of the adsorption of proteins, gold nanoparticles (AuNPs) create potential biological risks in biomedicine, leading to the formation of the protein corona. This adsorption is mainly due to the formation of gold-sulfur (AuS) covalent bonds between the AuNPs and the -SH groups, causing bioactivity denaturation and biological problems; however, it could also lead to some biological benefits. We explored AuNPs as a potential material for desensitization to allergens, such as ß-lactoglobulin (ßLG). To address the desensitization of AuNPs, we investigated the binding mechanism and the specific relationship of the time evolution of AuS bond, secondary structure, and allergy changes. The formation of AuS bond takes approximately 9 h, consistent with the complete changes time in secondary structure and immunoglobulin E (IgE) combining capacity of the ßLG, decreasing allergic reactions. These results indicate that AuNPs have the potential to minimize allergic reactions in the future.


Assuntos
Ouro/química , Imunoglobulina E/metabolismo , Lactoglobulinas/química , Lactoglobulinas/metabolismo , Nanopartículas Metálicas/química , Adsorção , Alérgenos/química , Alérgenos/metabolismo , Estrutura Secundária de Proteína
6.
J Agric Food Chem ; 69(35): 10321-10328, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34436881

RESUMO

The halal food market is globally growing along with the increased risk of adulteration. We proposed an amplification-free and mix-to-read CRISPR-Cas12-based nucleic acid analytical strategy allowing rapid identification and analysis of pork components, thus enriching the toolbox for ensuring halal food authenticity. We designed and optimized guide RNA (gRNA) targeting the pork cytochrome b (Cyt b) gene. gRNA allowed specific identification of the target Cyt b gene from pork components followed by activation of Cas12 protein to abundantly cleave single-stranded DNA probes with terminally labeled fluorophore and quencher groups, thus turning on fluorescence. The presence of the pork Cyt b gene thus can be mix-and-read- and only-one-step-detected, which may indicate the risk of halal food adulteration. The method allowed specific discrimination of pork meat from beef, mutton, and chicken and yielded a detection limit of 2.7 ng/µL of total DNA from pork meat. The reliability of the method was tested using the following processed meat products: halal foods beef luncheon meat and spiced beef and non-halal foods sausage and dried pork slices. The CRISPR-Cas12-based nucleic acid test strategy is promising for rapid food authentication.


Assuntos
Produtos da Carne , Carne Vermelha , Animais , Sistemas CRISPR-Cas , Bovinos , Contaminação de Alimentos/análise , Carne/análise , Produtos da Carne/análise , Reprodutibilidade dos Testes
7.
J Food Sci ; 84(8): 2086-2090, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31294460

RESUMO

The oxidation and color stability of porcine hemoglobin (Hb) in the presence of tea polyphenols (TP), as well as the mechanism, were investigated using the methods of color and oxidation analyses, ultraviolet-visible and fluorescence spectroscopy. Results indicated that TP interacted with the tryptophan and tyrosine residues of Hb through inserting into its hydrophobic pocket. This interaction showed a concentration-dependent effect on Hb, which might lead to completely opposite results. The presence of TP (16 mg/L) disrupted Hb (16 mg/L) structure, and the exposure of heme iron facilitated the oxidation and discoloration of Hb. However, a lower level of TP should not break Hb structure but could work as an antioxidant and restrain the formation of methemoglobin. Consequently, TP (1.6 mg/L) considerably maintained the redness of Hb (16 mg/L, P < 0.05) when stored at pH 7.4 and 25 °C for 72 hr. Results may provide scientific information for the proper use of TP in blood and meat products. PRACTICAL APPLICATION: Proper utilization of tea polyphenols (TP) in food products is beneficial to improve antioxidant capacity and nutrition quality of food. We proved that it was potential to corporate TP into blood and meat products to prevent discoloration and oxidative deterioration.


Assuntos
Aditivos Alimentares/química , Hemoglobinas/química , Produtos da Carne/análise , Extratos Vegetais/química , Polifenóis/química , Animais , Antioxidantes/química , Camellia sinensis/química , Cor , Oxirredução , Suínos , Chá/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA