Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(25): e2302254120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37307480

RESUMO

During human development, there is a switch in the erythroid compartment at birth that results in silencing of expression of fetal hemoglobin (HbF). Reversal of this silencing has been shown to be effective in overcoming the pathophysiologic defect in sickle cell anemia. Among the many transcription factors and epigenetic effectors that are known to mediate HbF silencing, two of the most potent are BCL11A and MBD2-NuRD. In this report, we present direct evidence that MBD2-NuRD occupies the γ-globin gene promoter in adult erythroid cells and positions a nucleosome there that results in a closed chromatin conformation that prevents binding of the transcriptional activator, NF-Y. We show that the specific isoform, MBD2a, is required for the formation and stable occupancy of this repressor complex that includes BCL11A, MBD2a-NuRD, and the arginine methyltransferase, PRMT5. The methyl cytosine binding preference and the arginine-rich (GR) domain of MBD2a are required for high affinity binding to methylated γ-globin gene proximal promoter DNA sequences. Mutation of the methyl cytosine-binding domain (MBD) of MBD2 results in a variable but consistent loss of γ-globin gene silencing, in support of the importance of promoter methylation. The GR domain of MBD2a is also required for recruitment of PRMT5, which in turn results in placement of the repressive chromatin mark H3K8me2s at the promoter. These findings support a unified model that integrates the respective roles of BCL11A, MBD2a-NuRD, PRMT5, and DNA methylation in HbF silencing.


Assuntos
Hemoglobina Fetal , gama-Globinas , Adulto , Recém-Nascido , Humanos , Genes Reguladores , Fatores de Transcrição , Cromatina , Citosina , Proteína-Arginina N-Metiltransferases , Proteínas de Ligação a DNA
2.
J Biol Chem ; 295(2): 584-596, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31806707

RESUMO

Heat shock proteins of 70 kDa (Hsp70s) are ubiquitous and highly conserved molecular chaperones. They play multiple essential roles in assisting with protein folding and maintaining protein homeostasis. Their chaperone activity has been proposed to require several rounds of binding to and release of polypeptide substrates at the substrate-binding domain (SBD) of Hsp70s. All available structures have revealed a single substrate-binding site in the SBD that binds a single segment of an extended polypeptide of 3-4 residues. However, this well-established single peptide-binding site alone has made it difficult to explain the efficient chaperone activity of Hsp70s. In this study, using purified proteins and site-directed mutagenesis, along with fluorescence polarization and luciferase-refolding assays, we report the unexpected discovery of a second peptide-binding site in Hsp70s. More importantly, the biochemical analyses suggested that this novel binding site, named here P2, is essential for Hsp70 chaperone activity. Furthermore, cross-linking and mutagenesis studies indicated that this second binding site is in the SBD adjacent to the first binding site. Taken together, our results suggest that these two essential binding sites of Hsp70s cooperate in protein folding.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Peptídeos/metabolismo , Sítios de Ligação , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas de Choque Térmico HSP70/química , Modelos Moleculares , Peptídeos/química , Conformação Proteica , Dobramento de Proteína , Especificidade por Substrato
3.
J Biol Chem ; 2018 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-30139747

RESUMO

This article has been withdrawn by Aiman Alhazmi, Marissa Mack, Tiffany Rolle, Jordan Hiegel, Syed Haqqani, Nga Dao, Farheen Zaman, Nak-Kyeong Kim, Neel Scarsdale, Charles Lyons, and Joseph Landry. Some of the genome-wide data sets were flawed and were not analyzed correctly. The withdrawing authors are in the process of correcting the data sets and re-analyzing them for resubmission.

4.
Angew Chem Int Ed Engl ; 57(32): 10263-10267, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-29939482

RESUMO

Controlled generation of cytotoxic agents with near-IR light is a current focus of photoactivated cancer therapy, including that involving cytotoxic platinum species. A heptamethine cyanine scaffolded PtII complex, IR797-Platin exhibits unprecedented Pt-O bond scission and enhancement in DNA platination in near-IR light. This complex also displayed significant singlet oxygen quantum yield thereby qualifying as a near-IR photodynamic therapeutic agent. The complex showed 30-60 fold enhancement of cytotoxicity in near-IR light in various cancer cell lines. The cellular imaging properties were also leveraged to observe its significant co-localization in cytoplasmic organelles. This is the first demonstration of a near-IR light-initiated therapy involving the cytotoxic effects of both active cisplatin and singlet oxygen.


Assuntos
Antineoplásicos/farmacologia , Carbocianinas/farmacologia , Compostos Organoplatínicos/farmacologia , Platina/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Carbocianinas/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Teoria da Densidade Funcional , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Raios Infravermelhos , Células MCF-7 , Estrutura Molecular , Compostos Organoplatínicos/síntese química , Compostos Organoplatínicos/química , Processos Fotoquímicos , Fotoquimioterapia , Platina/química
5.
Anal Biochem ; 532: 45-52, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28595966

RESUMO

Here we describe a convenient, inexpensive, and non-hazardous method for the measurement of the kinase activity of the catalytic subunit of cAMP-dependent protein kinase (PKACα). The assay is based on the separation of a substrate peptide labeled with a strong chromophore from the phosphorylated product peptide by high-performance liquid chromatograph (HPLC) and quantification of the product ratiometrically at a wavelength in the visual spectrum (Vis). The utility and reliability of the HPLC-Vis assay were demonstrated by characterizing the kinetic parameters (KM, Vmax) of the new Rh-MAB-Kemptide substrate, a commercially prepared TAMRA-Kemptide substrate, and ATP as well as the potency (IC50, Ki) of the known PKACα inhibitors H89 and PKI(5-24). The advantages of this assay are that it is convenient and inexpensive, uses readily synthesized or commercially available substrates that are shelf-stable, uses a common piece of laboratory equipment, and does not require any hazardous materials such as radioactive γ-32P-ATP. The assay format is also highly flexible and could be adapted for the testing of many different kinases by changing the peptide substrate sequence.


Assuntos
Bioensaio/métodos , Cromatografia Líquida de Alta Pressão/métodos , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Oligopeptídeos/química , Domínio Catalítico , Humanos , Cinética , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Reprodutibilidade dos Testes , Especificidade por Substrato
6.
Mol Pharmacol ; 90(1): 42-51, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27126611

RESUMO

Cytochrome P450 3A4 (CYP3A4) is the dominant P450 enzyme involved in human drug metabolism, and its inhibition may result in adverse interactions or, conversely, favorably reduce the systemic elimination rates of poorly bioavailable drugs. Herein we describe a spectroscopic investigation of the interaction of CYP3A4 with N-methylritonavir, an analog of ritonavir, widely used as a pharmacoenhancer. In contrast to ritonavir, the binding affinity of N-methylritonavir for CYP3A4 is pH-dependent. At pH <7.4, the spectra are definitively type I, whereas at pH ≥7.4 the spectra have split Soret bands, including a red-shifted component characteristic of a P450-carbene complex. Variable-pH UV-visible spectroscopy binding studies with molecular fragments narrows the source of this pH dependence to its N-methylthiazolium fragment. The C2 proton of this group is acidic, and variable-pH resonance Raman spectroscopy tentatively assigns it a pKa of 7.4. Hence, this fragment of N-methylritonavir is expected to be readily deprotonated under physiologic conditions to yield a thiazol-2-ylidene, which is an N-heterocyclic carbene that has high-affinity for and is presumed to be subsequently captured by the heme iron. This mechanism is supported by time-dependent density functional theory with an active site model that accurately reproduces distinguishing features of the experimental UV-visible spectra of N-methylritonavir bound to CYP3A4. Finally, density functional theory calculations support that this novel interaction is as strong as the tightest-binding azaheterocycles found in P450 inhibitors and could offer new avenues for inhibitor development.


Assuntos
Inibidores do Citocromo P-450 CYP3A/química , Citocromo P-450 CYP3A/metabolismo , Compostos Heterocíclicos/farmacologia , Metano/análogos & derivados , Citocromo P-450 CYP3A/química , Inibidores do Citocromo P-450 CYP3A/farmacologia , Compostos Heterocíclicos/química , Humanos , Concentração de Íons de Hidrogênio , Ligantes , Metano/química , Metano/farmacologia , Modelos Moleculares , Prótons , Teoria Quântica , Ritonavir/química , Ritonavir/farmacologia , Espectrofotometria Ultravioleta , Análise Espectral Raman , Titulometria
7.
Mol Microbiol ; 95(2): 258-69, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25388641

RESUMO

Ribosomal protein L27 is a component of the eubacterial large ribosomal subunit that has been shown to play a critical role in substrate stabilization during protein synthesis. This function is mediated by the L27 N-terminus, which protrudes into the peptidyl transferase center. In this report, we demonstrate that L27 in Staphylococcus aureus and other Firmicutes is encoded with an N-terminal extension that is not present in most Gram-negative organisms and is absent from mature ribosomes. We have identified a cysteine protease, conserved among bacteria containing the L27 N-terminal extension, which performs post-translational cleavage of L27. Ribosomal biology in eubacteria has largely been studied in the Gram-negative bacterium Escherichia coli; our findings indicate that there are aspects of the basic biology of the ribosome in S. aureus and other related bacteria that differ substantially from that of the E. coli ribosome. This research lays the foundation for the development of new therapeutic approaches that target this novel pathway.


Assuntos
Cisteína Proteases/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Staphylococcus aureus/metabolismo , Sequência de Aminoácidos , Biologia Computacional , Cisteína Proteases/genética , Escherichia coli/genética , Espectrometria de Massas , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Biossíntese de Proteínas , Proteínas Ribossômicas/genética , Homologia de Sequência de Aminoácidos , Staphylococcus aureus/genética
8.
Org Biomol Chem ; 14(1): 40-9, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26503632

RESUMO

Combretastatin A-4 (CA4) is highly potent anticancer drug that acts as an inhibitor of tubulin polymerization. The core of the CA4 structure contains a cis-stilbene, and it is known that the trans isomer is significantly less potent. We prepared an azobenzene analog of CA4 (Azo-CA4) that shows 13-35 fold enhancement in potency upon illumination. EC50 values in the light were in the mid nM range. Due to its ability to thermally revert to less toxic trans form, Azo-CA4 also has the ability to automatically turn its activity off with time. Azo-CA4 is less potent than CA-4 because it degrades in the presence of glutathione as evidenced by UV-Vis spectroscopy and ESI-MS. Nevertheless, Azo-CA4 represents a promising strategy for switchable potency for treatment of cancer.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Estilbenos/química , Estilbenos/farmacologia , Antineoplásicos/síntese química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Processos Fotoquímicos , Polimerização/efeitos dos fármacos , Estereoisomerismo , Estilbenos/síntese química , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo
9.
Org Biomol Chem ; 14(20): 4576-81, 2016 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-27126273

RESUMO

The design and development of irreversible kinase inhibitors is an expanding frontier of kinase drug discovery. The current approach to develop these inhibitors utilizes ATP-competitive inhibitor scaffolds to target non-catalytic cysteines in the kinase ATP-binding site. However, this approach is limited as not all kinases have a cysteine in the ATP-binding site that can be targeted. In this work, we report a complementary approach to developing irreversible kinase inhibitors that utilizes the substrate-binding site. Using the catalytic subunit of cAMP-dependent protein kinase (PKACα) as a model system, we have designed and synthesized an irreversible inhibitor based on the substrate-competitive inhibitor scaffold PKI(14-22) that covalently modifies non-catalytic Cys199 in the PKACα substrate-binding site. The new compound inhibits PKACα (IC50 = 11.8 ± 1.1 nM), is ∼100-fold selective for PKACα in a kinase panel, and covalently labels the kinase as demonstrated by fluorescence, mass spectrometry, and kinetics experiments. This study demonstrates the feasibility of utilizing this new approach to develop irreversible inhibitors for any of the eighty-nine kinases that possess a similar non-catalytic cysteine in their substrate-binding sites.


Assuntos
Domínio Catalítico , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/química , Desenho de Fármacos , Corantes Fluorescentes/química , Cetonas/síntese química , Cetonas/farmacologia , Sequência de Aminoácidos , Técnicas de Química Sintética , Cetonas/química , Modelos Moleculares
10.
J Virol ; 88(3): 1461-72, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24257610

RESUMO

The vesicular stomatitis virus (VSV) RNA-dependent RNA polymerase consists of two viral proteins; the large (L) protein is the main catalytic subunit, and the phosphoprotein (P) is an essential cofactor for polymerase function. The P protein interacts with the L protein and the N-RNA template, thus connecting the polymerase to the template. P protein also binds to free N protein to maintain it in a soluble, encapsidation-competent form. Previously, five sites of phosphorylation were identified on the P protein and these sites were reported to be differentially important for mRNA synthesis or genomic replication. The previous studies were carried out by biochemical analysis of portions of the authentic viral P protein or by analysis of bacterium-expressed, exogenously phosphorylated P protein by mutagenesis. However, there has been no systematic biochemical search for phosphorylation sites on authentic, virus-expressed P protein. In this study, we analyzed the P protein isolated from VSV-infected cells for sites of phosphorylation by mass spectrometry. We report the identification of Tyr14 as a previously unidentified phosphorylation site of VSV P and show that it is essential for viral transcription and replication. However, our mass spectral analysis failed to observe the phosphorylation of previously reported C-terminal residues Ser226 and Ser227 and mutagenic analyses did not demonstrate a role for these sites in RNA synthesis.


Assuntos
Fosfoproteínas/química , Fosfoproteínas/metabolismo , RNA Viral/biossíntese , Estomatite Vesicular/virologia , Vírus da Estomatite Vesicular Indiana/metabolismo , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/metabolismo , Motivos de Aminoácidos , Humanos , Espectrometria de Massas , Fosfoproteínas/genética , Fosforilação , Processamento de Proteína Pós-Traducional , RNA Viral/genética , Serina/genética , Serina/metabolismo , Tirosina/genética , Tirosina/metabolismo , Vírus da Estomatite Vesicular Indiana/química , Vírus da Estomatite Vesicular Indiana/genética , Proteínas Estruturais Virais/genética , Replicação Viral
11.
bioRxiv ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38293106

RESUMO

Ubiquitination of histone H2A at lysine 119 residue (H2AK119ub) plays critical roles in a wide range of physiological processes, including Polycomb gene silencing 1,2 , replication 3-5 , DNA damage repair 6-10 , X inactivation 11,12 , and heterochromatin organization 13,14 . However, the underlying mechanism and structural basis of H2AK119ub remains largely elusive. In this study, we report that H2AK119ub nucleosomes have a unique composition, containing histone variants H2BC1 and H2AZ.2, and importantly, this composition is required for H2AK119ub and Polycomb gene silencing. Using the UAB domain of RSF1, we purified H2AK119ub nucleosomes to a sufficient amount and purity. Mass spectrometry analyses revealed that H2AK119ub nucleosomes contain the histone variants H2BC1 and H2AZ.2. A cryo-EM study resolved the structure of native H2AK119ub nucleosomes to a 2.6A resolution, confirming H2BC1 in one subgroup of H2AK119ub nucleosomes. Tandem GST-UAB pulldown, Flag-H2AZ.2, and HA-H2BC1 immunoprecipitation revealed that H2AK119ub nucleosomes could be separated into distinct subgroups, suggesting their composition heterogeneity and potential dynamic organization. Knockout or knockdown of H2BC1 or H2AZ.2 reduced cellular H2AK119ub levels, establishing H2BC1 and H2AZ.2 as critical determinants of H2AK119ub. Furthermore, genomic binding profiles of H2BC1 and H2AZ.2 overlapped significantly with H2AK119ub binding, with the most significant overlapping in the gene body and intergenic regions. Finally, assays in developing embryos reveal an interaction of H2AZ.2, H2BC1, and RING1A in vivo . Thus, this study revealed, for the first time, that the H2AK119ub nucleosome has a unique composition, and this composition is required for H2AK119ub and Polycomb gene silencing.

12.
iScience ; 27(2): 108858, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38303720

RESUMO

Lung cancer is the third most common cancer with Black/AA men showing higher risk and poorer outcomes than NHW men. Lung cancer disparities are multifactorial, driven by tobacco exposure, inequities in care access, upstream health determinants, and molecular determinants including biological and genetic factors. Elevated expressions of protein arginine methyltransferases (PRMTs) correlating with poorer prognosis have been observed in many cancers. Most importantly, our study shows that PRMT6 displays higher expression in lung cancer tissues of Black/AA men compared to NHW men. In this study, we investigated the underlying mechanism of PRMT6 and its cooperation with PRMT1 to form a heteromer as a driver of lung cancer. Disrupting PRMT1/PRMT6 heteromer by a competitive peptide reduced proliferation in non-small cell lung cancer cell lines and patient-derived organoids, therefore, giving rise to a more strategic approach in the treatment of Black/AA men with lung cancer and to eliminate cancer health disparities.

13.
J Biol Chem ; 286(44): 37932-37944, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-21900245

RESUMO

Paxillin and HIC5 are closely related adapter proteins that regulate cell migration and are tyrosine-phosphorylated by focal adhesion kinase (FAK). Paxillin, HIC5, and FAK tyrosine phosphorylation increase upon cell attachment and decrease upon detachment from extracellular matrix. Unexpectedly, we found that although FAK tyrosine phosphorylation in attached cells did not require paxillin, in detached fibroblasts there was remaining FAK tyrosine phosphorylation that required expression of paxillin and was not supported by HIC5. The support of attachment-independent FAK tyrosine phosphorylation required the paxillin LIM domains and suggested that paxillin might facilitate oncogenic transformation. Paxillin but not HIC5 augmented anchorage-independent cell proliferation induced by RAS. Both anchorage-independent FAK tyrosine phosphorylation and RAS-induced colony formation required multiple docking sites on paxillin, including LD4 (docking sites for FAK-Src and GIT1/2-PIX-NCK-PAK complex), LD5, and all four carboxyl-terminal LIM domains (that bind tubulin and PTP-PEST). Analysis using paxillin mutants dissociated domains of paxillin that are required for regulation of cell migration from domains that are required for anchorage-independent cell proliferation and demonstrated essential functions of the paxillin LIM domains that are not found in HIC5 LIM domains. These results highlight the role of paxillin in facilitating attachment-independent signal transduction implicated in cancer.


Assuntos
Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Paxilina/metabolismo , Proteínas ras/metabolismo , Actinas/metabolismo , Animais , Adesão Celular , Proliferação de Células , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática , Fibroblastos/citologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas com Domínio LIM/metabolismo , Camundongos , Mutação , Fosforilação , Transdução de Sinais , Tirosina/química
14.
Anal Chem ; 83(3): 856-65, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21192683

RESUMO

We have developed a complete system for the isotopic labeling, fractionation, and automated quantification of differentially expressed peptides that significantly facilitates candidate biomarker discovery. We describe a new stable mass tagging reagent pair, (12)C(6)- and (13)C(6)-phenyl isocyanate (PIC), that offers significant advantages over currently available tags. Peptides are labeled predominantly at their amino termini and exhibit elution profiles that are independent of label isotope. Importantly, PIC-labeled peptides have unique neutral-mass losses upon CID fragmentation that enable charge state and label isotope identification and, thereby, decouple the sequence identification from the quantification of candidate biomarkers. To exploit these properties, we have coupled peptide fractionation protocols with a Thermo LTQ-XL LC-MS(2) data acquisition strategy and a suite of automated spectrum analysis software that identifies quantitative differences between labeled samples. This approach, dubbed the PICquant platform, is independent of protein sequence identification and excludes unlabeled peptides that otherwise confound biomarker discovery. Application of the PICquant platform to a set of complex clinical samples showed that the system allows rapid identification of peptides that are differentially expressed between control and patient groups.


Assuntos
Isocianatos/análise , Marcação por Isótopo/métodos , Espectrometria de Massas/métodos , Peptídeos/análise , Algoritmos , Isótopos de Carbono/análise , Radioisótopos de Carbono/análise , Cromatografia Líquida/métodos , Humanos , Isocianatos/química , Estrutura Molecular
15.
Biochem J ; 423(3): 315-21, 2009 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-19723024

RESUMO

Dietary ITCs (isothiocyanates) prevent cancer and show other bioactivities in vivo. As electrophiles, ITCs may covalently modify cellular proteins. Using a novel proteomics screen, we identified MIF (macrophage migration inhibitory factor) as the principal target of nutrient ITCs in intact cells. ITCs covalently modify the N-terminal proline residue of MIF and extinguish its catalytic tautomerase activity. MIF deficiency does not prevent induction of Phase 2 gene expression, a hallmark of many cancer chemopreventives, including ITCs. Due to the emerging role of MIF in the control of malignant cell growth and its clear involvement in inflammation, inhibition of MIF by nutrient ITCs suggests therapeutic strategies for inflammatory diseases and cancer.


Assuntos
Oxirredutases Intramoleculares/metabolismo , Isotiocianatos/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Processamento de Proteína Pós-Traducional , Células HeLa , Humanos , Inflamação/genética , Inflamação/metabolismo , Oxirredutases Intramoleculares/genética , Fatores Inibidores da Migração de Macrófagos/genética , Neoplasias/genética , Neoplasias/metabolismo
17.
Biochem Biophys Res Commun ; 369(4): 1215-20, 2008 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-18355442

RESUMO

Previous reports showed that urokinase plasminogen activator (uPA) converts plasminogen to plasmin which then activates matrix metalloproteinases (MMPs). Here, we report that uPA directly cleaved pro-MMP-9 in a time-dependent manner at both C- and N-terminus and generated two gelatinolytic bands. uPA-activated-MMP-9 efficiently degraded fibronectin and blocked by uPA inhibitor B428 and recombinant tissue inhibitor of metalloproteinase-1 (TIMP-1). B428 inhibited basal and PMA-induced active MMP-9 in glioblastomas (GBM) U1242 cell media as well as cell invasion in vitro. A combination of MMP-9 and uPA antibodies more significantly inhibited U1242 cell invasion than uPA or MMP-9 antibody alone. Both uPA and MMP-9 were highly expressed in U1242 cell and GBM patient specimens. Furthermore, two active MMP-9 fragments with identical molecular weights to the uPA-activated MMP-9 products were detected in GBM patient specimens. These results suggest that uPA-mediated direct activation of MMP-9 may promote GBM cell invasion.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Metaloproteinase 9 da Matriz/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Proteínas de Fase Aguda/metabolismo , Neoplasias Encefálicas/enzimologia , Ativação Enzimática , Fibronectinas/química , Gelatina/química , Glioblastoma/enzimologia , Humanos , Lipocalina-2 , Lipocalinas/metabolismo , Metaloproteinase 9 da Matriz/química , Invasividade Neoplásica , Proteínas Proto-Oncogênicas/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/química
19.
Virology ; 516: 127-138, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29346075

RESUMO

HPV E6 oncoproteins associate with cellular PDZ proteins. In addition to previously identified cellular PDZ proteins, we found association of the HPV16 E6 PBM with the Dystrophin Glycoprotein Complex, LRCC1, and SLC9A3R2. HPV18 E6 had additional associations when lysates from adenomatous cell lines were used including LRPPRC, RLGAPB, EIF3A, SMC2 and 3, AMOT, AMOTL1, and ARHGEF1; some of these cellular PDZ proteins are implicated in the regulation of the YAP1 transcriptional co-activator. In keratinocytes, nuclear translocation of YAP1 was promoted by the complete HPV-16 genome, or by expression of the individual E6 or E7 oncoproteins; the activity of E6 required an intact PBM at the carboxy-terminus. This work demonstrates that E6 association with cellular PDZ proteins promotes the nuclear localization of YAP1. The ability of E6 to promote the nuclear transport of YAP1 thus identifies an E6 activity that could contribute to the transformation of cells by E6.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Papillomavirus Humano 16/metabolismo , Papillomavirus Humano 18/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Infecções por Papillomavirus/virologia , Fosfoproteínas/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Núcleo Celular/genética , Proteínas de Ligação a DNA/genética , Papillomavirus Humano 16/genética , Papillomavirus Humano 18/genética , Humanos , Proteínas Oncogênicas Virais/genética , Domínios PDZ , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Fosfoproteínas/química , Fosfoproteínas/genética , Ligação Proteica , Transporte Proteico , Proteínas Repressoras/genética , Fatores de Transcrição , Proteínas de Sinalização YAP
20.
FEBS Open Bio ; 8(4): 606-613, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29632813

RESUMO

Overproduction of cortisol by the hypothalamus-pituitary-adrenal hormone system results in the clinical disorder known as Cushing's syndrome. Genomics studies have identified a key mutation (L205R) in the α-isoform of the catalytic subunit of cAMP-dependent protein kinase (PKACα) in adrenal adenomas of patients with adrenocorticotropic hormone-independent Cushing's syndrome. Here, we conducted kinetics and inhibition studies on the L205R-PKACα mutant. We have found that the L205R mutation affects the kinetics of both Kemptide and ATP as substrates, decreasing the catalytic efficiency (kcat/KM) for each substrate by 12-fold and 4.5-fold, respectively. We have also determined the IC 50 and Ki for the peptide substrate-competitive inhibitor PKI(5-24) and the ATP-competitive inhibitor H89. The L205R mutation had no effect on the potency of H89, but causes a > 250-fold loss in potency for PKI(5-24). Collectively, these data provide insights for the development of L205R-PKACα inhibitors as potential therapeutics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA