Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 20(9): 1203-1209, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33972761

RESUMO

Two-dimensional materials provide opportunities for developing semiconductor applications at atomistic thickness to break the limits of silicon technology. Black phosphorus (BP), as a layered semiconductor with controllable bandgap and high carrier mobility, is one of the most promising candidates for transistor devices at atomistic thickness1-4. However, the lack of large-scale growth greatly hinders its development in devices. Here, we report the growth of ultrathin BP on the centimetre scale through pulsed laser deposition. The unique plasma-activated region induced by laser ablation provides highly desirable conditions for BP cluster formation and transportation5,6, facilitating growth. Furthermore, we fabricated large-scale field-effect transistor arrays on BP films, yielding appealing hole mobility of up to 213 and 617 cm2 V-1 s-1 at 295 and 250 K, respectively. Our results pave the way for further developing BP-based wafer-scale devices with potential applications in the information industry.

2.
ACS Appl Mater Interfaces ; 13(44): 52978-52986, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34699164

RESUMO

Precise morphological control over anisotropic noble metal nanoparticles (ANPs) is one of the key issues in the nano-research field owing to their unique optoelectronic, magnetic, mechanical, and catalytic properties. Although nanostructures fabricated by the directed assembly of adsorbate have been widely demonstrated recently, facile yet universal synthesis of nanocrystal with tunable morphologies, green templates, no seeds, and high yield remains challenging. Herein, we develop a versatile method, allowing for the rapid, one-step, seedless, surfactant-free synthesis of a noble metal nanostructure with tunable anisotropy on MXene in a sequence-dependent manner through a single-DNA molecular regulator. Based on the mild reducibility of MXene and the selective affinity of the DNA to the specific facets in the crystals, oriented aggregations and the growth of ANPs (Au, Pt, Pd) can be achieved and the resulting asymmetric morphology from polyhedrons, or flowers, or nanoplates to dendrites is observed. The ability to align such ANPs on the MXene surface is expected to lead to improved photothermal effect and surface-enhanced Raman scattering. Furthermore, our work makes the fabrication of the ANPs or ANP-MXene heterostructure easier, stimulating further explorations of physical, chemical, and biological applications.

3.
Adv Mater ; 33(32): e2101263, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34176170

RESUMO

2D hybrid perovskites are very attractive for optoelectronic applications because of their numerous exceptional properties. The emerging 2D perovskite ferroelectrics, in which are the coupling of spontaneous polarization and piezoelectric effects, as well as photoexcitation and semiconductor behaviors, have great appeal in the field of piezo-phototronics that enable to effectively improve the performance of optoelectronic devices via modulating the electro-optical processes. However, current studies on 2D perovskite ferroelectrics focus on bulk ceramics that cannot endure irregular mechanical deformation and limit their application in flexible optoelectronics and piezo-phototronics. Herein, we synthesize ferroelectric EA4 Pb3 Br10 single-crystalline thin-films (SCFs) for integration into flexible photodetectors. The in-plane multiaxial ferroelectricity is evident within the EA4 Pb3 Br10 SCFs through systematic characterizations. Flexible photodetectors based on EA4 Pb3 Br10 SCFs are achieved with an impressive photodetection performance. More importantly, optoelectronic EA4 Pb3 Br10 SCFs incorporated with in-plane ferroelectric polarization and effective piezoelectric coefficient show great promise for the observation of piezo-phototronic effect, which is capable of greatly enhancing the photodetector performance. Under external strains, the responsivity of the flexible photodetectors can be modulated by piezo-phototronic effect with a remarkable enhancement up to 284%. Our findings shed light on the piezo-phototronic devices and offer a promising avenue to broaden functionalities of hybrid perovskite ferroelectrics.

4.
ACS Nano ; 14(11): 16003-16012, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33185085

RESUMO

Realizing multicolored luminescence in two-dimensional (2D) nanomaterials would afford potential for a range of next-generation nanoscale optoelectronic devices. Moreover, combining fine structured spectral line emission and detection may further enrich the studies and applications of functional nanomaterials. Herein, a lanthanide doping strategy has been utilized for the synthesis of 2D ZnSe:Er3+ nanosheets to achieve fine-structured, multicolor luminescence spectra. Simultaneous upconversion and downconversion emission is realized, which can cover an ultrabroadband optical range, from ultraviolet through visible to the near-infrared region. By investigating the low-temperature fine structure of emission spectra at 4 K, we have observed an abundance of sublevel electronic energy transitions, elucidating the electronic structure of Er3+ ions in the 2D ZnSe nanosheet. As the temperature is varied, these nanosheets exhibit tunable multicolored luminescence under 980 and 365 nm excitation. Utilizing the distinct sublevel transitions of Er3+ ions, the developed 2D ZnSe:Er3+ optical temperature sensor shows high absolute (15.23% K-1) and relative sensitivity (8.61% K-1), which is superior to conventional Er3+-activated upconversion luminescent nanothermometers. These findings imply that Er3+-doped ZnSe nanomaterials with direct and wide band gap have the potential for applications in future low-dimensional photonic and sensing devices at the 2D limit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA