Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Biochem Biophys Res Commun ; 642: 97-106, 2023 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-36566568

RESUMO

As in other mammalian tissues, the extracellular matrix (ECM) of skin functions as mechanical support and regulative environment that guides the behavior of the cells. ECM is a gel-like structure that is primarily composed of structural and nonstructural proteins. While the content of structural proteins is stable, the level of nonstructural ECM proteins, such as thrombospondin-4 (THBS4), is dynamically regulated. In a previous work we demonstrated that THBS4 stimulated cutaneous wound healing. In this work we discovered that in addition to proliferation, THBS4 stimulated the migration of primary keratinocytes in 3D. By using a proteotransciptomic approach we found that stimulation of keratinocytes with THBS4 regulated the activity of signaling pathways linked to proliferation, migration, inflammation and differentiation. Interestingly, some of the regulated genes (eg IL37, TSLP) have been associated with the pathogenesis of atopic dermatitis (AD). We concluded that THBS4 is a promising candidate for novel wound healing therapies and suggest that there is a potential convergence of pathways that stimulate cutaneous wound healing with those active in the pathogenesis of inflammatory skin diseases.


Assuntos
Queratinócitos , Pele , Animais , Humanos , Proliferação de Células , Inflamação/patologia , Interleucina-1/metabolismo , Queratinócitos/metabolismo , Mamíferos , Pele/metabolismo , Trombospondinas/metabolismo
2.
Exp Cell Res ; 415(1): 113111, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35337817

RESUMO

Olfactomedin 4 (OLFM4), a multifunctional matricellular protein, is involved in regulation of angiogenesis, innate immunity, inflammation, tumorigenesis and metastasis formation via modulation of important cellular processes like adhesion, proliferation, differentiation as well as apoptosis. In our previous work we demonstrated the upregulation of OLFM4 during liver regeneration and cutaneous wound healing. Here we studied the outcomes of OLFM4 downregulation in human immortalized keratinocytes - the HaCaT cells. The suppression of OLFM4 inhibited migration but enhanced the proliferation of these cells. By using proteomic, and phosphoproteomic analysis, we found that OLFM4 downregulation induced changes in the levels of 184 proteins and 348 phosphosites. An integrated pathway analysis suggested that the increased phosphorylation of CDK7 at Ser164 and Thr170 may serve as the key event in the activation of CDK2 and consequent activation of cell cycle progression. Furthermore, the decrease in GIT1 and WAVE2 protein levels were connected to the disorganization of the actin cytoskeleton, reduction of lamellipodia formation at the leading edge of HaCaT cells, and decrease in their migration capacity.


Assuntos
Fator Estimulador de Colônias de Granulócitos , Proteômica , Citoesqueleto de Actina/metabolismo , Ciclo Celular , Divisão Celular , Proliferação de Células , Proteínas da Matriz Extracelular , Glicoproteínas , Fator Estimulador de Colônias de Granulócitos/genética , Humanos , Queratinócitos/metabolismo
3.
Cell Mol Life Sci ; 79(3): 157, 2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35218417

RESUMO

Olfactomedin-4 (OLFM4) is an olfactomedin-domain-containing glycoprotein, which regulates cell adhesion, proliferation, gastrointestinal inflammation, innate immunity and cancer metastasis. In the present study we investigated its role in skin regeneration. We found that OLFM4 expression is transiently upregulated in the proliferative phase of cutaneous wound healing in humans as well as in mice. Moreover, a significant increase in OLFM4 expression was detected in the skin of lesional psoriasis, a chronic inflammatory disease characterized by keratinocyte hyperproliferation. In vitro experiments demonstrated that OLFM4 selectively stimulated keratinocyte proliferation and increased both keratinocyte and fibroblast migration. Using proteotranscriptomic pathway analysis we revealed that transcription factors POU5F1/OCT4 and ESR1 acted as hubs for OLFM4-induced signalling in keratinocytes. In vivo experiments utilizing mouse splinted full-thickness cutaneous wound healing model showed that application of recombinant OLFM4 protein can significantly improve wound healing efficacy. Taken together, our results suggest that OLFM4 acts as a transiently upregulated inflammatory signal that promotes wound healing by regulating both dermal and epidermal cell compartments of the skin.


Assuntos
Proliferação de Células/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Animais , Queimaduras/metabolismo , Queimaduras/patologia , Movimento Celular/efeitos dos fármacos , Receptor alfa de Estrogênio/metabolismo , Feminino , Fator Estimulador de Colônias de Granulócitos/genética , Fator Estimulador de Colônias de Granulócitos/metabolismo , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Fator 3 de Transcrição de Octâmero/metabolismo , Psoríase/metabolismo , Psoríase/patologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Regulação para Cima/efeitos dos fármacos
4.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36674597

RESUMO

Dupuytren's contracture (DC) is a chronic and progressive fibroproliferative disorder restricted to the palmar fascia of the hands. Previously, we discovered the presence of high levels of connective tissue growth factor in sweat glands in the vicinity of DC nodules and hypothesized that sweat glands have an important role in the formation of DC lesions. Here, we shed light on the role of sweat glands in the DC pathogenesis by proteomic analysis and immunofluorescence microscopy. We demonstrated that a fraction of sweat gland epithelium underwent epithelial-mesenchymal transition illustrated by negative regulation of E-cadherin. We hypothesized that the increase in connective tissue growth factor expression in DC sweat glands has both autocrine and paracrine effects in sustaining the DC formation and inducing pathological changes in DC-associated sweat glands.


Assuntos
Contratura de Dupuytren , Humanos , Contratura de Dupuytren/metabolismo , Contratura de Dupuytren/patologia , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Transição Epitelial-Mesenquimal , Proteômica , Fáscia/metabolismo
5.
Biochem Biophys Res Commun ; 529(2): 455-461, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32703451

RESUMO

Human mesenchymal stromal cells (MSC) are an important tool for basic and translational research. Large amounts of MSC are required for in vitro and in vivo studies, however, the limited life-span and differentiation ability in vitro hamper their optimal use. Here we report that 1:1 mixture of L15 and mTeSR1 culture media increased the life-span of IPI-SA3-C4, a normal non-immortalized human subcutaneous preadipocyte strain by 20% while retaining their adipogenic capacity and stable karyotype. The increased proliferative capacity was accompanied by increased expression of the stem markers POU5F1, SOX2, MYC and hTERT, and inhibition of hTERT activity abolished the growth advantage of L15-mTeSR1. Consequently, the described MSC culture would considerably enhance the utility of MSC for in vitro studies.


Assuntos
Adipócitos/citologia , Adipogenia , Proliferação de Células , Telomerase/metabolismo , Adipócitos/metabolismo , Técnicas de Cultura de Células , Linhagem Celular , Sobrevivência Celular , Humanos
6.
Biochem Biophys Res Commun ; 474(1): 118-125, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-27103434

RESUMO

The lack of primary liver tumor cells has hampered testing of potential chemotherapeutic agents in vitro. To overcome this issue we developed a primary mouse liver tumor cell line K07074. The K07074 cells were immortal, exhibited a biliary phenotype, formed colonies in soft agar and displayed an increase in Hedgehog, Notch and Akt signaling. To study the effect of single and combined inhibition of the liver tumor-related pathways on the growth of K07074 cells we treated these with small-molecule antitumor agents. While the inhibition of Akt and Notch pathways strongly inhibited the growth of K07074 cells the inhibition of Wnt and Hedgehog pathways was less efficient in cell growth suppression. Interestingly, the inhibition of Akt pathway at the level of Akt-Pdpk1 interaction was sufficient to suppress the growth of tumor cells and no significant additive effect could be detected when co-treated with the inhibitors of Wnt, Hedgehog or Notch pathways. Only when suboptimal doses of Akt-Pdpk1 interaction inhibitor NSC156529 were used an additive effect with Notch inhibition was seen. We conclude that the Akt pathway inhibitor NSC156529 is potentially useful as single treatment for liver tumors with hyperactivated Akt signaling.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Antineoplásicos/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Linhagem Celular Tumoral , Genes Supressores de Tumor/efeitos dos fármacos , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento
7.
Front Cell Dev Biol ; 10: 1073320, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36506087

RESUMO

Cutaneous wound healing is a complex process that encompasses alterations in all aspects of the skin including the extracellular matrix (ECM). ECM consist of large structural proteins such as collagens and elastin as well as smaller proteins with mainly regulative properties called matricellular proteins. Matricellular proteins bind to structural proteins and their functions include but are not limited to interaction with cell surface receptors, cytokines, or protease and evoking a cellular response. The signaling initiated by matricellular proteins modulates differentiation and proliferation of cells having an impact on the tissue regeneration. In this review we give an overview of the matricellular proteins that have been found to be involved in cutaneous wound healing and summarize the information known to date about their functions in this process.

8.
Sci Rep ; 11(1): 20165, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635750

RESUMO

Solution blow spinning (SBS) has recently emerged as a novel method that can produce nano- and microfiber structures suitable for tissue engineering. Gelatin is an excellent precursor for SBS as it is derived mainly from collagens that are abundant in natural extracellular matrices. Here we report, for the first time the successful generation of 3D thermally crosslinked preforms by using SBS from porcine gelatin. These SBS mats were shown to have three-dimensional fibrous porous structure similar to that of mammalian tissue extracellular matrix. In pharma industry, there is an urgent need for adequate 3D liver tissue models that could be used in high throughput setting for drug screening and to assess drug induced liver injury. We used SBS mats as culturing substrates for human hepatocytes to create an array of 3D human liver tissue equivalents in 96-well format. The SBS mats were highly cytocompatible, facilitated the induction of hepatocyte specific CYP gene expression in response to common medications, and supported the maintenance of hepatocyte differentiation and polarization status in long term cultures for more than 3 weeks. Together, our results show that SBS-generated gelatin scaffolds are a simple and efficient platform for use in vitro for drug testing applications.


Assuntos
Diferenciação Celular , Matriz Extracelular/química , Gelatina/química , Hepatócitos/citologia , Hepatócitos/fisiologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Técnicas de Cultura de Células , Humanos
9.
Front Cell Dev Biol ; 9: 745637, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34631719

RESUMO

Thrombospondin-4 (THBS4) is a non-structural extracellular matrix molecule associated with tissue regeneration and a variety of pathological processes characterized by increased cell proliferation and migration. However, the mechanisms of how THBS4 regulates cell behavior as well as the pathways contributing to its effects have remained largely unexplored. In the present study we investigated the role of THBS4 in skin regeneration both in vitro and in vivo. We found that THBS4 expression was upregulated in the dermal compartment of healing skin wounds in humans as well as in mice. Application of recombinant THBS4 protein promoted cutaneous wound healing in mice and selectively stimulated migration of primary fibroblasts as well as proliferation of keratinocytes in vitro. By using a combined proteotranscriptomic pathway analysis approach we discovered that ß-catenin acted as a hub for THBS4-dependent cell signaling and likely plays a key role in promoting its downstream effects. Our results suggest that THBS4 is an important contributor to wound healing and its incorporation into novel wound healing therapies may be a promising strategy for treatment of cutaneous wounds.

10.
FEBS Lett ; 594(5): 958-970, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31705801

RESUMO

Lgr5-LacZ mice harbor the Escherichia coli LacZ gene encoding ß-galactosidase (ß-gal) under the control of the Lgr5 promoter, a stem/progenitor cell marker. In injured livers of Lgr5-LacZ mice, cells expressing ß-galactosidase (ß-gal) are considered as potential bipotent liver progenitors; however, their origin and identity remain unknown. Unexpectedly, using lineage tracing, we demonstrate that the ß-gal+ cells do not originate from liver parenchymal cells. Instead, ß-gal+ cells, isolated from injured livers of both Lgr5-LacZ and wild-type mice, are positive for markers of Kupffer cells, liver-resident macrophages. The ß-gal expression in these cells is a result of elevated expression of the endogenous beta-galactosidase Glb1. In injured livers of Lgr5-LacZ mice, bacterial ß-gal expression is very low, suggesting transgene silencing. The gene expression profile of the ß-gal+ Kupffer cells from injured livers suggests a role in liver regeneration.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/genética , Células de Kupffer/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Imunológicos/metabolismo , beta-Galactosidase/genética , Animais , Tetracloreto de Carbono/efeitos adversos , Linhagem da Célula , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Células de Kupffer/efeitos dos fármacos , Óperon Lac , Regeneração Hepática , Masculino , Camundongos , Camundongos Transgênicos , Análise de Sequência de RNA , beta-Galactosidase/metabolismo
11.
In Vitro Cell Dev Biol Anim ; 56(5): 399-411, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32535758

RESUMO

Murine 3T3 cell lines constitute a standard model system for in vitro study of mammalian adipogenesis although they do not faithfully reflect the biology of the human adipose cells. Several human adipose cell lines and strains have been used to recapitulate human adipogenesis in vitro, but to date there is no generally accepted in vitro model for human adipogenesis. We obtained a clonal strain of human subcutaneous adipose stromal cells, IPI-SA3-C4, and characterized its utility as an in vitro model for human subcutaneous adipogenesis. IPI-SA3-C4 cells showed a high proliferative potential for at least 30 serial passages, reached 70 cumulative population doublings and exhibited a population doubling time of 47 h and colony forming efficiency of 12% at the 57th cumulative population doublings. IPI-SA3-C4 cells remained diploid (46XY) even at the 56th cumulative population doublings and expressed the pluripotency markers POU5F1, NANOG, KLF4, and MYC even at 50th cumulative population doublings. Under specific culture conditions, IPI-SA3-C4 cells displayed cellular hallmarks and molecular markers of adipogenic, osteogenic, and chondrogenic lineages and showed adipogenic capacity even at the 66th cumulative population doublings. These characteristics show IPI-SA3-C4 cells as a promising potential model for human subcutaneous adipogenesis in vitro.


Assuntos
Adipócitos/citologia , Adipogenia , Modelos Biológicos , Células-Tronco Multipotentes/citologia , Animais , Biomarcadores/metabolismo , Carcinogênese/patologia , Linhagem Celular , Linhagem da Célula , Proliferação de Células , Senescência Celular , Condrogênese , Diploide , Humanos , Lactente , Cariótipo , Fator 4 Semelhante a Kruppel , Masculino , Camundongos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , beta-Galactosidase/metabolismo
12.
Sci Rep ; 6: 27398, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27264108

RESUMO

While the cellular mechanisms of liver regeneration have been thoroughly studied, the role of extracellular matrix (ECM) in liver regeneration is still poorly understood. We utilized a proteomics-based approach to identify the shifts in ECM composition after CCl4 or DDC treatment and studied their effect on the proliferation of liver cells by combining biophysical and cell culture methods. We identified notable alterations in the ECM structural components (eg collagens I, IV, V, fibronectin, elastin) as well as in non-structural proteins (eg olfactomedin-4, thrombospondin-4, armadillo repeat-containing x-linked protein 2 (Armcx2)). Comparable alterations in ECM composition were seen in damaged human livers. The increase in collagen content and decrease in elastic fibers resulted in rearrangement and increased stiffness of damaged liver ECM. Interestingly, the alterations in ECM components were nonhomogenous and differed between periportal and pericentral areas and thus our experiments demonstrated the differential ability of selected ECM components to regulate the proliferation of hepatocytes and biliary cells. We define for the first time the alterations in the ECM composition of livers recovering from damage and present functional evidence for a coordinated ECM remodelling that ensures an efficient restoration of liver tissue.


Assuntos
Matriz Extracelular/metabolismo , Regeneração Hepática , Fígado/patologia , Animais , Proliferação de Células , Células Cultivadas , Feminino , Humanos , Fígado/metabolismo , Fígado/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos CBA , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência
13.
Mol Cancer Ther ; 14(11): 2486-96, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26294745

RESUMO

The serine/threonine kinase AKT/PKB has a critical role in the regulation of cell proliferation. Because AKT signaling is deregulated in numerous human malignancies, it has become an attractive anticancer drug target. A number of small molecule AKT kinase inhibitors have been developed; however, severe side effects have prevented their use in clinical trials. To find inhibitors of AKT1 signaling with principally novel mechanism of action, we carried out a live cell-based screen for small molecule inhibitors of physical interaction between AKT1 and its primary activator PDPK1. The screen revealed one molecule-NSC156529, which downregulated AKT1 signaling, efficiently decreased the proliferation of human cancer cells in vitro, and substantially inhibited the growth of prostate tumor xenografts in vivo. Interestingly, the treated tumor xenografts exhibited higher expression level of normal prostate differentiation markers but did not show augmented cell death, suggesting that the identified compound primarily enhances the differentiation of malignant cells toward normal prostate epithelium and thus poses as an attractive lead compound for developing novel antitumor agents with less cytotoxic side effects.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Antineoplásicos/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Neoplasias/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Células HEK293 , Humanos , Camundongos Nus , Microscopia de Fluorescência , Neoplasias/metabolismo , Neoplasias/patologia , Ligação Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Arthritis Res Ther ; 17: 144, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-26018562

RESUMO

INTRODUCTION: Dupuytren's contracture (DC) is a chronic fibroproliferative disease of the hand, which is characterized by uncontrolled proliferation of atypical myofibroblasts at the cellular level. We hypothesized that specific areas of the DC tissue are sustaining the cell proliferation and studied the potential molecular determinants that might contribute to the formation of such niches. METHODS: We studied the expression pattern of cell proliferation marker Ki67, phosphorylated AKT (Ak mouse strain thymoma) kinase, DC-associated growth factors (connective tissue growth factor (CTGF), basic fibroblast growth factor (bFGF), insulin-like growth factor 2 (IGF-2)) and extracellular matrix components (laminins, fibronectin, collagen IV) in DC tissue and normal palmar fascia using immunofluorescence microscopy and quantitative real-time polymerase chain reaction (qPCR). RESULTS: We found that proliferative cells in the DC nodules were concentrated in the immediate vicinity of small blood vessels and localized predominantly in the myofibroblast layer. Correspondingly, the DC-associated blood vessels contained increased levels of phosphorylated AKT, a hallmark of activated growth factor signaling. When studying the expression of potential activators of AKT signaling we found that the expression of bFGF was confined to the endothelium of the small blood vessels, IGF-2 was present uniformly in the DC tissue and CTGF was expressed in the DC-associated sweat gland acini. In addition, the blood vessels in DC nodules contained increased amounts of laminins 511 and 521, which have been previously shown to promote the proliferation and stem cell properties of different cell types. CONCLUSIONS: Based on our findings, we propose that in the DC-associated small blood vessels the presence of growth factors in combination with favorable extracellular matrix composition provide a supportive environment for sustained proliferation of myofibroblasts and thus the blood vessels play an important role in DC pathogenesis.


Assuntos
Vasos Sanguíneos/metabolismo , Contratura de Dupuytren/patologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Laminina/metabolismo , Proliferação de Células , Contratura de Dupuytren/metabolismo , Fáscia/irrigação sanguínea , Fáscia/patologia , Humanos , Microscopia de Fluorescência , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA