RESUMO
AIMS: Use of nonsteroidal anti-inflammatory drugs (NSAIDs) can cause damage to the gastric and duodenal mucosa. Some probiotics have proven useful in ameliorating the harmful side-effects of NSAIDs. Our aim was to evaluate whether oral administration of Bifidobacterium animalis ssp. lactis 420 (B420) can attenuate the increase of calprotectin excretion into faeces induced by intake of diclofenac sustained-release tablets. METHODS: A double-blind, parallel-group, placebo-controlled and randomized clinical study was performed in 50 healthy male and female volunteers aged 20-40 years, in Finland. Study participation consisted of 4 phases: run-in, intervention with B420 or placebo, B420 or placebo + NSAID treatment, and follow-up. The primary outcome was the concentration of calprotectin in faeces. Secondary outcomes were haemoglobin and microbial DNA in faeces and blood haemoglobin levels. RESULTS: Intake of diclofenac increased the faecal excretion of calprotectin in both groups. The observed increases were 48.19 ± 61.55 µg/g faeces (mean ± standard deviation) in the B420 group and 31.30 ± 39.56 µg/g in the placebo group (difference estimate 16.90; 95% confidence interval: -14.00, 47.77; P = .276). There were no significant differences between the treatment groups in changes of faecal or blood haemoglobin. Faecal B. lactis DNA was much more abundant in the B420 group compared to the placebo group (ANOVA estimate for treatment difference 0.85 × 109 /g faeces; 95% confidence interval: 0.50 × 109 , 1.21 × 109 ; P < .0001). CONCLUSIONS: Short-term administration of the probiotic B420 did not protect the healthy adult study participants from diclofenac-induced gastrointestinal inflammation as determined by analysis of faecal calprotectin levels.
Assuntos
Bifidobacterium animalis , Probióticos , Adulto , Anti-Inflamatórios não Esteroides/efeitos adversos , Método Duplo-Cego , Fezes , Feminino , Humanos , Inflamação , Masculino , Probióticos/uso terapêutico , Adulto JovemRESUMO
UNLABELLED: Influenza B virus causes annual epidemics and, along with influenza A virus, accounts for substantial disease and economic burden throughout the world. Influenza B virus infects only humans and some marine mammals and is not responsible for pandemics, possibly due to a very low frequency of reassortment and a lower evolutionary rate than that of influenza A virus. Influenza B virus has been less studied than influenza A virus, and thus, a comparison of influenza A and B virus infection mechanisms may provide new insight into virus-host interactions. Here we analyzed the early events in influenza B virus infection and interferon (IFN) gene expression in human monocyte-derived macrophages and dendritic cells. We show that influenza B virus induces IFN regulatory factor 3 (IRF3) activation and IFN-λ1 gene expression with faster kinetics than does influenza A virus, without a requirement for viral protein synthesis or replication. Influenza B virus-induced activation of IRF3 required the fusion of viral and endosomal membranes, and nuclear accumulation of IRF3 and viral NP occurred concurrently. In comparison, immediate early IRF3 activation was not observed in influenza A virus-infected macrophages. Experiments with RIG-I-, MDA5-, and RIG-I/MDA5-deficient mouse fibroblasts showed that RIG-I is the critical pattern recognition receptor needed for the influenza B virus-induced activation of IRF3. Our results show that innate immune mechanisms are activated immediately after influenza B virus entry through the endocytic pathway, whereas influenza A virus avoids early IRF3 activation and IFN gene induction. IMPORTANCE: Recently, a great deal of interest has been paid to identifying the ligands for RIG-I under conditions of natural infection, as many previous studies have been based on transfection of cells with different types of viral or synthetic RNA structures. We shed light on this question by analyzing the earliest step in innate immune recognition of influenza B virus by human macrophages. We show that influenza B virus induces IRF3 activation, leading to IFN gene expression after viral RNPs (vRNPs) are released into the cytosol and are recognized by RIG-I receptor, meaning that the incoming influenza B virus is already able to activate IFN gene expression. In contrast, influenza A (H3N2) virus failed to activate IRF3 at very early times of infection, suggesting that there are differences in innate immune recognition between influenza A and B viruses.
Assuntos
RNA Helicases DEAD-box/metabolismo , Regulação da Expressão Gênica/imunologia , Vírus da Influenza B/imunologia , Influenza Humana/imunologia , Fator Regulador 3 de Interferon/metabolismo , Interleucinas/metabolismo , Transdução de Sinais/imunologia , Animais , Linhagem Celular , Proteína DEAD-box 58 , Células Dendríticas/imunologia , Interações Hospedeiro-Patógeno , Humanos , Immunoblotting , Fator Regulador 3 de Interferon/genética , Interferons , Interleucinas/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Reação em Cadeia da Polimerase em Tempo Real , Receptores ImunológicosRESUMO
Consumption of certain probiotic strains may be beneficial for reducing the risk of acute upper respiratory tract infections (URTIs), however, underlying immunological mechanisms are elusive. Bifidobacterium lactis Bl-04™ has been reported in humans to significantly reduce the risk of URTIs, affect the innate immunity in the nasal mucosa, and reduce nasal lavage virus titer after a rhinovirus (RV) challenge. To study the immunological mechanisms, we investigated the effect of Bl-04 on cytokine production and transcriptomes of human monocyte-derived macrophages (Mfs) and dendritic cells (DCs), and further on RV replication and cytokine production in MRC-5 fibroblasts. The results showed that Bl-04 modulates antiviral immune responses and potentiates cytokine production during viral challenge mimic in immune cells. However, effect of Bl-04 on RV replication and cytokine production in fibroblasts was negligible. Overall, the findings suggest that Bl-04 mildly stimulates antiviral immunity in Mfs and DCs, and potentially influences viral replication in fibroblasts that however warrants further investigations.
RESUMO
Lacticaseibacillus paracasei Lpc-37 (Lpc-37) has previously shown to reduce perceived stress in healthy adults. The ChillEx study investigated whether Lpc-37 reduces stress in a model of chronic examination stress in healthy students. One hundred ninety university students (18-40 y) were randomized to take 1.56 × 1010 colony-forming units of Lpc-37 or placebo (1:1) each day for 10 weeks, in a triple-blind, parallel, multicenter clinical trial consisting of six visits: two screening visits, a baseline visit, and visits at 4, 8, and 10 weeks after baseline. The primary objective was to demonstrate that Lpc-37 reduces stress, as measured by the change in state anxiety from baseline to just before the first examination, after 8 weeks using the State Trait Anxiety Inventory (STAI-state). Secondary objectives aimed to demonstrate that Lpc-37 modulates psychological stress-induced symptoms and biomarkers related to mood and sleep. An exploratory analysis of fecal microbiota composition was also conducted. There was no difference between Lpc-37 and placebo groups in the change of STAI-state score (estimate 1.03; 95% confidence interval [CI]: -1.62, 3.67; p = 0.446). None of the secondary outcomes resulted in significant results when corrected for multiplicity, but exploratory results were notable. Results showed an improvement in sleep-disturbance scores (odds ratio 0.30; 95% CI: 0.11, 0.82; p = 0.020) and reduction in duration of sleep (odds ratio 3.52; 95% CI: 1.46, 8.54; p = 0.005) on the Pittsburgh Sleep Quality Index questionnaire after 8 weeks in the Lpc-37 group compared to placebo. A reduction in Bond Lader VAS-alertness was also demonstrated in the Lpc-37 group compared to placebo (estimate -3.97; 95% CI: -7.78, -0.15; p = 0.042) just prior to the examination. Analysis of fecal microbiota found no differences between study groups for alpha and beta diversity or microbiota abundance. Adverse events were similar between groups. Vital signs, safety-related laboratory measures, and gastrointestinal parameters were stable during the trial. In conclusion, probiotic Lpc-37 was safe but had no effect on stress, mood, or anxiety in healthy university students in this model of chronic academic stress. ClinicalTrials.gov: NCT04125810.
RESUMO
Influenza A virus infection is a major global disease requiring annual vaccination. Clinical studies indicate that certain probiotics may support immune function against influenza and other respiratory viruses, but direct molecular evidence is scarce. Here, mice were treated with a placebo or Bifidobacterium animalis subsp. lactis Bl-04 (Bl-04) orally via food (cereal) and also by gavage and exposed to Influenza A virus H1N1 (H1N1). The symptoms of the infection were observed, and tissues and digesta were collected for viral load RT-qPCR, transcriptomics, and microbiomics. The treatment decreased the viral load by 48% at day 3 post-infection in lungs and symptoms of infection at day 4 compared to placebo. Tissue transcriptomics showed differences between the Bl-04 and placebo groups in the genes in the Influenza A pathway in the intestine, blood, and lungs prior to and post-infection, but the results were inconclusive. Moreover, 16S rRNA gene profiling and qPCR showed the presence of Bl-04 in the intestine, but without major shifts in the microbiome. In conclusion, Bl-04 treatment may influence the host response against H1N1 in a murine challenge model; however, further studies are required to elucidate the mechanism of action.
RESUMO
Probiotics have been suggested as one solution to counter detrimental health effects by SARS-CoV-2; however, data so far is scarce. We tested the effect of two probiotic consortia, OL-1 and OL-2, against SARS-CoV-2 in ferrets and assessed their effect on cytokine production and transcriptome in a human monocyte-derived macrophage (Mf) and dendritic cell (DC) model. The results showed that the consortia significantly reduced the viral load, modulated immune response, and regulated viral receptor expression in ferrets compared to placebo. In the human Mf and DC model, OL-1 and OL-2-induced cytokine production and genes related to SARS-CoV-2 antiviral immunity. The study results indicate that probiotic stimulation of the ferret immune system leads to improved antiviral immunity against SARS-COV-2, and the genes and cytokines associated with anti-SARS-CoV-2 immunity are stimulated in human immune cells in vitro. The effect of the consortia against SARS-CoV-2 warrants further investigations in human clinical trials.
RESUMO
In less than 3 months after the first cases of swine origin 2009 influenza A (H1N1) virus infections were reported from Mexico, WHO declared a pandemic. The pandemic virus is antigenically distinct from seasonal influenza viruses, and the majority of human population lacks immunity against this virus. We have studied the activation of innate immune responses in pandemic virus-infected human monocyte-derived dendritic cells (DC) and macrophages. Pandemic A/Finland/553/2009 virus, representing a typical North American/European lineage virus, replicated very well in these cells. The pandemic virus, as well as the seasonal A/Brisbane/59/07 (H1N1) and A/New Caledonia/20/99 (H1N1) viruses, induced type I (alpha/beta interferon [IFN-alpha/beta]) and type III (IFN-lambda1 to -lambda3) IFN, CXCL10, and tumor necrosis factor alpha (TNF-alpha) gene expression weakly in DCs. Mouse-adapted A/WSN/33 (H1N1) and human A/Udorn/72 (H3N2) viruses, instead, induced efficiently the expression of antiviral and proinflammatory genes. Both IFN-alpha and IFN-beta inhibited the replication of the pandemic (H1N1) virus. The potential of IFN-lambda3 to inhibit viral replication was lower than that of type I IFNs. However, the pandemic virus was more sensitive to the antiviral IFN-lambda3 than the seasonal A/Brisbane/59/07 (H1N1) virus. The present study demonstrates that the novel pandemic (H1N1) influenza A virus can readily replicate in human primary DCs and macrophages and efficiently avoid the activation of innate antiviral responses. It is, however, highly sensitive to the antiviral actions of IFNs, which may provide us an additional means to treat severe cases of infection especially if significant drug resistance emerges.
Assuntos
Antivirais/farmacologia , Citocinas/biossíntese , Células Dendríticas/metabolismo , Vírus da Influenza A Subtipo H1N1/fisiologia , Influenza Humana/epidemiologia , Interferon-alfa/farmacologia , Interferon beta/farmacologia , Macrófagos/metabolismo , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Influenza Humana/virologia , Neuraminidase/antagonistas & inibidores , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Replicação ViralRESUMO
BACKGROUND: Spinal fusion surgery causes severe pain. Strong opioids, commonly used as postoperative analgesics, may have unwanted side effects. S-ketamine may be an effective analgesic adjuvant in opioid patient-controlled analgesia (PCA). However, the optimal adjunct S-ketamine dose to reduce postoperative opioid consumption is still unknown. METHODS: We randomized 107 patients at two tertiary hospitals in a double-blinded, placebo-controlled clinical trial of adults undergoing major lumbar spinal fusion surgery. Patients were randomly allocated to four groups in order to compare the effects of three different doses of adjunct S-ketamine (0.25, 0.5, and 0.75 mg ml-1) or placebo on postoperative analgesia in oxycodone PCA. Study drugs were administered for 24 hours postoperative after which oxycodone-PCA was continued for further 48 hours. Our primary outcome was cumulative oxycodone consumption at 24 hours after surgery. RESULTS: Of the 100 patients analyzed, patients receiving 0.75 mg ml-1 S-ketamine in oxycodone PCA needed 25% less oxycodone at 24 h postoperatively (61.2 mg) compared with patients receiving 0.5 mg ml-1 (74.7 mg) or 0.25 mg ml-1 (74.1 mg) S-ketamine in oxycodone or oxycodone alone (81.9 mg) (mean difference: -20.6 mg; 95% confidence interval [CI]: -41 to -0.20; P = 0.048). A beneficial effect in mean change of pain intensity at rest was seen in the group receiving 0.75 mg ml-1 S-ketamine in oxycodone PCA compared with patients receiving lower ketamine doses or oxycodone alone (standardized effect size: 0.17, 95% CI: 0.013-0.32, P = 0.033). The occurrence of adverse events was similar among the groups. CONCLUSIONS: Oxycodone PCA containing S-ketamine as an adjunct at a ratio of 1: 0.75 decreased cumulative oxycodone consumption at 24 h after major lumbar spinal fusion surgery without additional adverse effects.
Assuntos
Analgesia Controlada pelo Paciente/métodos , Ketamina/uso terapêutico , Vértebras Lombares/cirurgia , Oxicodona/uso terapêutico , Fusão Vertebral/métodos , Adulto , Idoso , Analgésicos/administração & dosagem , Analgésicos/uso terapêutico , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/uso terapêutico , Relação Dose-Resposta a Droga , Método Duplo-Cego , Esquema de Medicação , Feminino , Humanos , Ketamina/administração & dosagem , Região Lombossacral , Masculino , Pessoa de Meia-Idade , Avaliação de Resultados em Cuidados de Saúde/métodos , Avaliação de Resultados em Cuidados de Saúde/estatística & dados numéricos , Oxicodona/administração & dosagem , Medição da Dor/métodos , Dor Pós-Operatória/etiologia , Dor Pós-Operatória/prevenção & controle , Fusão Vertebral/efeitos adversosRESUMO
Plasma lipid concentrations cannot properly account for the complex interactions prevailing in lipoprotein (patho)physiology. Sequential ultracentrifugation (UCF) is the gold standard for physical lipoprotein isolations allowing for subsequent analyses of the molecular composition of the particles. Due to labor and cost issues, however, the UCF-based isolations are usually done only for VLDL, LDL, and HDL fractions; sometimes with the addition of intermediate density lipoprotein (IDL) particles and the fractionation of HDL into HDL(2) and HDL(3) (as done here; n = 302). We demonstrate via these data, with the lipoprotein lipid concentration and composition information combined, that the self-organizing map (SOM) analysis reveals a novel data-driven in silico phenotyping of lipoprotein metabolism beyond the experimentally available classifications. The SOM-based findings are biologically consistent with several well-known metabolic characteristics and also explain some apparent contradictions. The novelty is the inherent emergence of complex lipoprotein associations; e.g., the metabolic subgrouping of the associations between plasma LDL cholesterol concentrations and the structural subtypes of LDL particles. Importantly, lipoprotein concentrations cannot pinpoint lipoprotein phenotypes. It would generally be beneficial to computationally enhance the UCF-based lipoprotein data as illustrated here. Particularly, the compositional variations within the lipoprotein particles appear to be a fundamental issue with metabolic and clinical corollaries.
Assuntos
Biologia Computacional/métodos , Lipoproteínas/metabolismo , Fenótipo , Apolipoproteínas B/sangue , Apolipoproteínas B/isolamento & purificação , Apolipoproteínas B/metabolismo , Biologia Computacional/economia , Feminino , Humanos , Lipoproteínas/sangue , Lipoproteínas/isolamento & purificação , Masculino , Metabolômica , Reconhecimento Automatizado de Padrão , UltracentrifugaçãoRESUMO
The growing worldwide epidemic of obesity and associated metabolic health comorbidities has resulted in an urgent need for safe and efficient nutritional solutions. The research linking obesity with gut microbiota dysbiosis has led to a hypothesis that certain bacterial strains could serve as probiotics helping in weight management and metabolic health. In the search for such strains, the effect of Bifidobacterium animalis subsp. lactis 420 (B420) on gut microbiota and metabolic health, and the mechanisms of actions, has been investigated in a variety of in vitro, pre-clinical, and clinical studies. In this review, we aim to highlight the research on B420 related to obesity, metabolic health, and the microbiota. Current research supports the hypothesis that gut dysbiosis leads to an imbalance in the inflammatory processes and loss of epithelial integrity. Bacterial components, like endotoxins, that leak out of the gut can invoke low-grade, chronic, and systemic inflammation. This imbalanced state is often referred to as metabolic endotoxemia. Scientific evidence indicates that B420 can slow down many of these detrimental processes via multiple signaling pathways, as supported by mechanistic in vitro and in vivo studies. We discuss the connection of these mechanisms to clinical evidence on the effect of B420 in controlling weight gain in overweight and obese subjects. The research further indicates that B420 may improve the epithelial integrity by rebalancing a dysbiotic state induced by an obesogenic diet, for example by increasing the prevalence of lean phenotype microbes such as Akkermansia muciniphila. We further discuss, in the context of delivering the health benefits of B420: the safety and technological aspects of the strain including genomic characterization, antibiotic resistance profiling, stability in the product, and survival of the live probiotic in the intestine. In summary, we conclude that the clinical and preclinical studies on metabolic health suggest that B420 may be a potential candidate in combating obesity; however, further clinical studies are needed.
Assuntos
Bifidobacterium animalis , Metabolismo Energético , Microbioma Gastrointestinal , Probióticos , Biomarcadores , Disbiose , Nível de Saúde , Fatores de Risco de Doenças Cardíacas , Humanos , Imunomodulação , Resistência à Insulina , Obesidade/epidemiologia , Obesidade/etiologia , Obesidade/metabolismo , Transdução de SinaisRESUMO
BACKGROUND: Alcohol consumption is associated with increased serum high density lipoprotein (HDL) cholesterol levels and a decreased risk for the development of atherosclerosis. However, the effects of heavy alcohol intake on reverse cholesterol transport, one of the key anti-atherogenic processes related to HDL, are poorly known. METHODS: The ability of total HDL as well as HDL(2) and HDL(3) subclasses to promote cholesterol efflux from (3)H-cholesterol-labeled RAW 264.7 macrophages was studied among 6 heavy alcohol drinkers and 6 controls. Distribution of HDL subclasses was analyzed by 4 to 30% native gradient gels. Serum phospholipid transfer protein (PLTP) and cholesteryl ester transfer protein (CETP) activities were analyzed among several other biochemical measures. RESULTS: Cholesterol efflux to HDL(2) of heavy drinkers was 22% (p = 0.025) higher relative to controls. The increase in HDL(2) phospholipids, with a concomitant 2-fold (p = 0.055) increase in large HDL(2b) particles, was associated with enhanced cholesterol efflux to HDL(2). Interestingly, the cholesterol efflux to HDL(3) did not differ between the 2 study groups. These findings may be partially explained by a decreased CETP activity (-26%, p = 0.037) and an increased PLTP activity (39%, p = 0.045) in heavy drinkers. CONCLUSIONS: The increased cholesterol efflux potential of HDL(2) is most likely an anti-atherogenic feature linked to heavy alcohol consumption. The cholesterol efflux and HDL phospholipids also associated strongly within the whole study group (r(s) = 0.910, p Assuntos
Consumo de Bebidas Alcoólicas/sangue
, Colesterol/metabolismo
, Lipoproteínas HDL2/metabolismo
, Macrófagos/metabolismo
, Adulto
, Alcoolismo/sangue
, Animais
, Linhagem Celular
, Proteínas de Transferência de Ésteres de Colesterol/sangue
, HDL-Colesterol/sangue
, Lipoproteínas de Alta Densidade Pré-beta/sangue
, Humanos
, Lipoproteínas HDL/sangue
, Lipoproteínas HDL2/sangue
, Lipoproteínas HDL3/sangue
, Masculino
, Camundongos
, Pessoa de Meia-Idade
, Fosfatidilcolina-Esterol O-Aciltransferase/sangue
, Proteínas de Transferência de Fosfolipídeos/sangue
RESUMO
BACKGROUND: Phosphatidylethanol (PEth) is a promising new marker for detecting long-term alcohol abuse with excellent sensitivity and specificity. Current methods are based on the high performance liquid chromatography-mass spectrometric method and therefore require high levels of expertise and expensive instrumentation. This study was designed to generate PEth-specific monoclonal antibodies for PEth immunoassay development. METHODS: C57/BL6 mice were immunized with PEth in 3 different carriers, mouse serum albumin, mouse high-density lipoproteins, and human low-density lipoprotein (LDL). Mouse splenocytes were fused with a mouse myeloma cell line using the hybridoma technique. Mouse IgM-producing cell lines were selected by limiting dilutions. Binding characteristics of the anti-PEth antibodies were studied using luminometric immunoassays and sequence analysis of the variable region mRNA sequences of the antibodies. Produced antibodies were purified by chromatographic methods. PEth was detected with these antibodies in fluorescence immunoassay and flow cytometric analysis. RESULTS: We generated monoclonal cell lines (2B1 and 2E9) that produce IgM antibodies binding specifically to PEth but not to structurally or chemically similar phospholipids, such as phosphatidylcholine, phosphatidic acid, and cardiolipin. We show here that these anti-PEth antibodies can be used to detect PEth in a fluorescent PEth assay and FACS analysis of human red blood cell samples spiked with PEth. CONCLUSIONS: The present study shows that PEth-specific monoclonal antibodies can be generated using traditional hybridoma technique. Immunogenicity of PEth was enhanced using human LDL as an immunization carrier. The generated monoclonal anti-PEth antibodies, 2B1 and 2E9 bind to PEth in fluid phase and in biological membranes.
Assuntos
Alcoolismo/diagnóstico , Anticorpos Monoclonais/biossíntese , Biomarcadores/análise , Glicerofosfolipídeos/análise , Glicerofosfolipídeos/imunologia , Imunoensaio , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos , Sequência de Bases , Linhagem Celular , Feminino , Citometria de Fluxo , Imunofluorescência , Humanos , Hibridomas/imunologia , Imunização , Imunoglobulina M/biossíntese , Região Variável de Imunoglobulina/genética , Lipoproteínas HDL , Lipoproteínas LDL , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/química , Análise de Sequência de RNARESUMO
Influenza A viruses cause recurrent epidemics and occasional global pandemics. Wild birds are the natural reservoir of influenza A virus from where the virus can be transmitted to poultry or to mammals including humans. Mortality among humans in the highly pathogenic avian influenza H5N1 virus infection is even 60%. Despite intense research, there are still open questions in the pathogenicity of the H5N1 virus in humans. To characterize the H5N1 virus infection in human monocyte-derived macrophages (Mɸs) and dendritic cells (DCs), we used human isolates of highly pathogenic H5N1/2004 and H5N1/1997 and low pathogenic H7N9/2013 avian influenza viruses in comparison with a seasonal H3N2/1989 virus. We noticed that the H5N1 viruses have an overwhelming ability to replicate and spread in primary human immune cell cultures, and even the addition of trypsin did not equalize the infectivity of H7N9 or H3N2 viruses to the level seen with H5N1 virus. H5N1 virus stocks contained more often propagation-competent viruses than the H7N9 or H3N2 viruses. The data also showed that human DCs and Mɸs maintain 1,000- and 10,000-fold increase in the production of infectious H5N1 virus, respectively. Both analyzed highly pathogenic H5N1 viruses showed multi-cycle infection in primary human DCs and Mɸs, whereas the H3N2 and H7N9 viruses were incapable of spreading in immune cells. Interestingly, H5N1 virus was able to spread extremely efficiently despite the strong induction of antiviral interferon gene expression, which may in part explain the high pathogenicity of H5N1 virus infection in humans.
RESUMO
BACKGROUND: A key challenge in metabonomics is to uncover quantitative associations between multidimensional spectroscopic data and biochemical measures used for disease risk assessment and diagnostics. Here we focus on clinically relevant estimation of lipoprotein lipids by 1H NMR spectroscopy of serum. RESULTS: A Bayesian methodology, with a biochemical motivation, is presented for a real 1H NMR metabonomics data set of 75 serum samples. Lipoprotein lipid concentrations were independently obtained for these samples via ultracentrifugation and specific biochemical assays. The Bayesian models were constructed by Markov chain Monte Carlo (MCMC) and they showed remarkably good quantitative performance, the predictive R-values being 0.985 for the very low density lipoprotein triglycerides (VLDL-TG), 0.787 for the intermediate, 0.943 for the low, and 0.933 for the high density lipoprotein cholesterol (IDL-C, LDL-C and HDL-C, respectively). The modelling produced a kernel-based reformulation of the data, the parameters of which coincided with the well-known biochemical characteristics of the 1H NMR spectra; particularly for VLDL-TG and HDL-C the Bayesian methodology was able to clearly identify the most characteristic resonances within the heavily overlapping information in the spectra. For IDL-C and LDL-C the resulting model kernels were more complex than those for VLDL-TG and HDL-C, probably reflecting the severe overlap of the IDL and LDL resonances in the 1H NMR spectra. CONCLUSION: The systematic use of Bayesian MCMC analysis is computationally demanding. Nevertheless, the combination of high-quality quantification and the biochemical rationale of the resulting models is expected to be useful in the field of metabonomics.
Assuntos
Análise Química do Sangue/métodos , Doença das Coronárias/sangue , Doença das Coronárias/diagnóstico , Diagnóstico por Computador/métodos , Lipoproteínas/sangue , Espectroscopia de Ressonância Magnética/métodos , Inteligência Artificial , Teorema de Bayes , Biomarcadores/sangue , Humanos , Reconhecimento Automatizado de Padrão/métodos , Prótons , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
In March 2013 a new avian influenza A(H7N9) virus emerged in China and infected humans with a case fatality rate of over 30%. Like the highly pathogenic H5N1 virus, H7N9 virus is causing severe respiratory distress syndrome in most patients. Based on genetic analysis this avian influenza A virus shows to some extent adaptation to mammalian host. In the present study, we analyzed the activation of innate immune responses by this novel H7N9 influenza A virus and compared these responses to those induced by the avian H5N1 and seasonal H3N2 viruses in human monocyte-derived dendritic cells (moDCs). We observed that in H7N9 virus-infected cells, interferon (IFN) responses were weak although the virus replicated as well as the H5N1 and H3N2 viruses in moDCs. H7N9 virus-induced expression of pro-inflammatory cytokines remained at a significantly lower level as compared to H5N1 virus-induced "cytokine storm" seen in human moDCs. However, the H7N9 virus was extremely sensitive to the antiviral effects of IFN-α and IFN-ß in pretreated cells. Our data indicates that different highly pathogenic avian viruses may show considerable differences in their ability to induce host antiviral responses in human primary cell models such as moDCs. The unexpected appearance of the novel H7N9 virus clearly emphasizes the importance of the global influenza surveillance system. It is, however, equally important to systematically characterize in normal human cells the replication capacity of the new viruses and their ability to induce and respond to natural antiviral substances such as IFNs.
Assuntos
Citocinas/biossíntese , Células Dendríticas/virologia , Subtipo H7N9 do Vírus da Influenza A , Interferon-alfa/farmacologia , Interferon beta/farmacologia , Replicação Viral/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , HumanosRESUMO
Avian influenza A (H9N2) viruses have occasionally been identified in humans with upper respiratory tract infections. The novel H7N9/2013 virus identified in China shows that a low pathogenic avian influenza (LPAI) virus can be highly pathogenic in humans. Therefore, it is important to understand virus-host cell interactions and immune responses triggered by LPAI viruses in humans. We found that LPAI A/Hong Kong/1073/99 (H9N2) virus replicated efficiently in human dendritic cells (DCs). The H9N2 virus induced strong IFN gene expression although with different kinetics than seasonal influenza A/Beijing/353/89 (H3N2) virus. IFN inducible antiviral proteins were produced in H9N2 virus-infected cells at the same level as in H3N2 infection. The H9N2 virus was extremely sensitive to the antiviral actions of type I IFNs. These results indicate that the avian influenza H9N2 virus is inducing a strong antiviral IFN response in human DCs.
Assuntos
Células Dendríticas/virologia , Imunidade Inata , Vírus da Influenza A Subtipo H9N2/fisiologia , Replicação Viral/fisiologia , Western Blotting , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Regulação Viral da Expressão Gênica/imunologia , Humanos , Interferons/genética , Interferons/metabolismo , Cultura de VírusRESUMO
Toll-like receptors (TLRs) are pattern-recognition receptors of the innate immune system that recognize various pathogen-associated molecules. TLR ligands are potent activators of immune cells and certain TLR ligands have a synergistic ability to induce the production of pro-inflammatory cytokines. In the present study we have analyzed the potential synergy between TLR3, TLR4 and TLR7/8 ligands in type I and type III interferon (IFN) gene expression in human monocyte-derived dendritic cells (moDCs). We show that stimulation of moDCs with TLR7/8 ligand R848 together with TLR3 or TLR4 ligands, polyI:C or LPS, respectively, leads to a synergistic expression of IFN-ß and IFN-λ1 mRNAs. Neutralization of type I IFNs as well as IFN priming prior to stimulation suggest that IFN-dependent positive feedback loop is at least partly responsible for the mechanism of synergy. Enhanced expression of TLR3 and especially TLR7, which are both under the regulation of type I IFNs, correlated to synergistic TLR ligand-dependent induction of IFN-ß and IFN-λ1 genes. NF-κB, PI3 kinase and MAP kinase pathways were involved in TLR ligand-induced IFN gene expression as evidenced by pharmacological signaling inhibitors. The data indicates that IFNs contribute to TLR-dependent gene activation in human DCs stimulated with multiple TLR ligands.
Assuntos
Células Dendríticas/imunologia , Interferon beta/genética , Interleucinas/genética , Monócitos/citologia , Receptores Toll-Like/metabolismo , Apresentação Cruzada/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/enzimologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imidazóis/farmacologia , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Interferon beta/metabolismo , Interferons , Interleucinas/metabolismo , Ligantes , Lipopolissacarídeos/farmacologia , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Testes de Neutralização , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Poli I-C/farmacologia , Ligação Proteica/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Elementos de Resposta/genética , Receptores Toll-Like/genética , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismoRESUMO
TLRs are innate immune receptors that recognize pathogen-associated structures. Binding of ligands to different TLRs can induce the production of proinflammatory cytokines in a synergistic manner. We have analyzed the molecular mechanisms of synergy in TLR ligand-stimulated human monocyte-derived macrophages and dendritic cells (moDCs). Stimulation of moDCs with the TLR8 ligand together with the TLR3 or TLR4 ligand led to synergistic IL-6, IL-10, IL-12, and TNF-alpha mRNA expression and cytokine production. DNA-binding assays showed that TLR3 and TLR8 stimulation induced binding of multiple IFN regulatory factor (IRF) and STAT transcription factors to the IL-12p35 gene promoter IFN-stimulated response element in moDCs and macrophages but with different binding profiles and kinetics. We also demonstrate that NF-kappaB, MAPKs and PI-3K pathways have an important role in TLR-induced cytokine gene expression, as pharmacological inhibitors of these signaling pathways inhibited TLR3, TLR4, and TLR8 ligand-induced cytokine mRNA expression and protein production. Especially, synergistic IL-12p70 production was abolished completely in NF-kappaB, MAPK p38, and PI-3K inhibitor-treated moDCs. Our data suggest that TLR-dependent, synergistic cytokine gene expression results from enhanced activation and cooperation among NF-kappaB, IRF, MAPK, PI-3K, and STAT signaling pathways.
Assuntos
Citocinas/genética , Células Dendríticas/metabolismo , Macrófagos/metabolismo , Receptor Cross-Talk , Transdução de Sinais , Receptores Toll-Like/metabolismo , Citocinas/biossíntese , Humanos , Fatores Reguladores de Interferon/metabolismo , Ligantes , Sistema de Sinalização das MAP Quinases , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , RNA Mensageiro/biossíntese , Fatores de Transcrição STAT/metabolismo , Receptor 3 Toll-Like , Receptor 4 Toll-Like , Receptor 8 Toll-LikeRESUMO
Emerging evidence indicates the potential involvement of ghrelin, an endogenous ligand for the growth hormone secretagogue receptor, in low-grade inflammatory diseases such as obesity and atherosclerosis. The goal of the present study was to use cell culture models to investigate the influences of ghrelin and obestatin in processes participating in atherogenesis. We studied monocyte adhesion, monocyte chemoattractant protein-1, and adhesion molecule expression on endothelial cells as well as binding of oxidized low-density lipoprotein (LDL) and acetylated LDL to macrophages. Ghrelin treatment increased adhesion of calcein-labeled THP-1 monocytes to EA.hy 926 endothelial cells. Simultaneously, ghrelin increased the expression of intercellular adhesion molecule-1 measured by quantitative reverse transcriptase polymerase chain reaction. Tumor necrosis factor-alpha stimulation together with ghrelin treatment decreased both monocyte adhesion and vascular cell adhesion molecule-1 and monocyte chemoattractant protein-1 expression and, together with obestatin treatment, decreased vascular cell adhesion molecule-1 expression. Finally, ghrelin and obestatin increased binding of oxidized LDL to thioglycollate-elicited mouse peritoneal macrophages. No changes were observed in the uptake of acetylated LDL by mouse J774.A1 macrophages after exposure to ghrelin or obestatin. In conclusion, we found 3 lines of in vitro evidence supporting proatherogenic properties of ghrelin in the early stages of the disease. However, in the presence of tumor necrosis factor-alpha stimulation, opposite effects of ghrelin were observed, suggesting that ghrelin may also have an anti-inflammatory role in the presence of increased inflammation, for example, during the more progressed phases of atherogenesis.
Assuntos
Aterosclerose/patologia , Aterosclerose/prevenção & controle , Adesão Celular/efeitos dos fármacos , Grelina/farmacologia , Lipoproteínas LDL/sangue , Monócitos/efeitos dos fármacos , Acilação , Animais , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Quimiocina CCL2/metabolismo , Células Endoteliais/efeitos dos fármacos , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Necrose Tumoral alfa/farmacologiaRESUMO
(1)H NMR spectra of plasma are known to provide specific information on lipoprotein subclasses in the form of complex overlapping resonances. A combination of (1)H NMR and self-organising map (SOM) analysis was applied to investigate if automated characterisation of subclass-related metabolic interactions can be achieved. To reliably assess the intrinsic capability of (1)H NMR for resolving lipoprotein subclass profiles, sum spectra representing the pure lipoprotein subclass part of actual plasma were simulated with the aid of experimentally derived model signals for 11 distinct lipoprotein subclasses. Two biochemically characteristic categories of spectra, representing normolipidaemic and metabolic syndrome status, were generated with corresponding lipoprotein subclass profiles. A set of spectra representing a metabolic pathway between the two categories was also generated. The SOM analysis, based solely on the aliphatic resonances of these simulated spectra, clearly revealed the lipoprotein subclass profiles and their changes. Comparable SOM analysis in a group of 69 experimental (1)H NMR spectra of serum samples, which according to biochemical analyses represented a wide range of lipoprotein lipid concentrations, corroborated the findings based on the simulated data. Interestingly, the choline-N(CH(3))(3) region seems to provide more resolved clustering of lipoprotein subclasses in the SOM analyses than the methyl-CH(3) region commonly used for subclass quantification. The results illustrate the inherent suitability of (1)H NMR metabonomics for automated studies of lipoprotein subclass-related metabolism and demonstrate the power of SOM analysis in an extensive and representative case of (1)H NMR metabonomics.