RESUMO
The acquisition of cell identity is associated with developmentally regulated changes in the cellular histone methylation signatures. For instance, commitment to neural differentiation relies on the tightly controlled gain or loss of H3K27me3, a hallmark of polycomb-mediated transcriptional gene silencing, at specific gene sets. The KDM6B demethylase, which removes H3K27me3 marks at defined promoters and enhancers, is a key factor in neurogenesis. Therefore, to better understand the epigenetic regulation of neural fate acquisition, it is important to determine how Kdm6b expression is regulated. Here, we investigated the molecular mechanisms involved in the induction of Kdm6b expression upon neural commitment of mouse embryonic stem cells. We found that the increase in Kdm6b expression is linked to a rearrangement between two 3D configurations defined by the promoter contact with two different regions in the Kdm6b locus. This is associated with changes in 5-hydroxymethylcytosine (5hmC) levels at these two regions, and requires a functional ten-eleven-translocation (TET) 3 protein. Altogether, our data support a model whereby Kdm6b induction upon neural commitment relies on an intronic enhancer the activity of which is defined by its TET3-mediated 5-hmC level. This original observation reveals an unexpected interplay between the 5-hmC and H3K27me3 pathways during neural lineage commitment in mammals. It also questions to which extent KDM6B-mediated changes in H3K27me3 level account for the TET-mediated effects on gene expression.
Assuntos
Dioxigenases/metabolismo , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica no Desenvolvimento , Histona Desmetilases com o Domínio Jumonji/genética , Neurogênese , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animais , Células Cultivadas , Dioxigenases/genética , Células-Tronco Embrionárias/metabolismo , Epigênese Genética , Técnicas de Silenciamento de Genes , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Regulação para CimaRESUMO
Transposable elements (TEs) have invaded most genomes and constitute up to 50% of the human genome. Machinery based on small non-coding piRNAs has evolved to inhibit their expression at the transcriptional and post-transcriptional levels. Surprisingly, this machinery is weakened during specific windows of time in mice, flies or plants, allowing the expression of TEs in germline cells. The function of this de-repression remains unknown. In Drosophila, we have previously shown that this developmental window is characterized by a reduction of Piwi expression in dividing germ cells. Here, we show that the unique knock-down of Aub in these cells leads to female sterility. It correlates with defects in piRNA amplification, an increased Piwi expression and an increased silencing of transcriptionally silenced TEs. These defects are similar to those observed when Aub is depleted in the whole germline which underlies the crucial role of this developmental window for both oogenesis and TE silencing. We further show that, with age, some fertility is recovered which is concomitant to a decrease of Piwi and TE silencing. These data pinpoint the Pilp as a tremendously important step for female fertility and genome stability. They further show that such a restricted developmental niche of germ cells may sense environmental changes, such as aging, to protect the germline all along the life.
Assuntos
Proteínas Argonautas/genética , Elementos de DNA Transponíveis , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Genoma de Inseto , Fatores de Iniciação de Peptídeos/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Animais , Proteínas Argonautas/metabolismo , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Infertilidade Feminina/genética , Oogênese/genética , Óvulo/citologia , Óvulo/crescimento & desenvolvimento , Óvulo/metabolismo , Fatores de Iniciação de Peptídeos/deficiência , RNA Interferente Pequeno/metabolismo , Transdução de SinaisRESUMO
In vitro corticogenesis from embryonic stem cells (ESCs) is an attractive model of cortical development and a promising tool for cortical therapy. It is unknown to which extent epigenetic mechanisms crucial for cortex development and function, such as parental genomic imprinting, are recapitulated by in vitro corticogenesis. Here, using genome-wide transcriptomic and methylation analyses on hybrid mouse tissues and cells, we find a high concordance of imprinting status between in vivo and ESC-derived cortices. Notably, in vitro corticogenesis strictly reproduced the in vivo parent-of-origin-dependent expression of 41 imprinted genes (IGs), including Mest and Cdkn1c known to control corticogenesis. Parent-of-origin-dependent DNA methylation was also conserved at 14 of 18 imprinted differentially methylated regions. The least concordant imprinted locus was Gpr1-Zdbf2, where the aberrant bi-allelic expression of Zdbf2 and Adam23 was concomitant with a gain of methylation on the maternal allele in vitro. Combined, our data argue for a broad conservation of the epigenetic mechanisms at imprinted loci in cortical cells derived from ESCs. We propose that in vitro corticogenesis helps to define the still poorly understood mechanisms that regulate imprinting in the brain and the roles of IGs in cortical development.
Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Células-Tronco Embrionárias/metabolismo , Impressão Genômica , Animais , Linhagem Celular , Proliferação de Células/fisiologia , Metilação de DNA , Imunofluorescência , Regulação da Expressão Gênica no Desenvolvimento , Loci Gênicos , Camundongos , Microscopia de Fluorescência , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Neuroglia/metabolismo , Neurônios/metabolismo , Polimorfismo de Fragmento de Restrição , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase em Tempo Real , TranscriptomaRESUMO
Parental allele-specific expression of imprinted genes is mediated by imprinting control regions (ICRs) that are constitutively marked by DNA methylation imprints on the maternal or paternal allele. Mono-allelic DNA methylation is strictly required for the process of imprinting and has to be faithfully maintained during the entire life-span. While the regulation of DNA methylation itself is well understood, the mechanisms whereby the opposite allele remains unmethylated are unclear. Here, we show that in the mouse, at maternally methylated ICRs, the paternal allele, which is constitutively associated with H3K4me2/3, is marked by default by H3K27me3 when these ICRs are transcriptionally inactive, leading to the formation of a bivalent chromatin signature. Our data suggest that at ICRs, chromatin bivalency has a protective role by ensuring that DNA on the paternal allele remains unmethylated and protected against spurious and unscheduled gene expression. Moreover, they provide the proof of concept that, beside pluripotent cells, chromatin bivalency is the default state of transcriptionally inactive CpG island promoters, regardless of the developmental stage, thereby contributing to protect cell identity.
Assuntos
Alelos , Cromatina/metabolismo , Impressão Genômica , Animais , Células Cultivadas , Cromatina/genética , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Células-Tronco Embrionárias/fisiologia , Feminino , Regulação da Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Especificidade de Órgãos , Regiões Promotoras GenéticasRESUMO
Transposable elements (TEs) pose a threat to genome integrity, and the piRNA pathway in animal gonads plays a crucial role in silencing TE activity. While the transcriptional regulation of the piRNA pathway components in germ cells has been documented in mice and flies, the mechanisms orchestrating the transcriptional program of the somatic piRNA pathway in Drosophila ovaries remains unresolved. Here, we demonstrate that Traffic jam (Tj), an orthologue of a large Maf transcription factor in mammals, is a master regulator of the piRNA pathway in ovarian somatic cells, playing a crucial role in maintaining TE silencing and genomic integrity in somatic tissues. We show that Tj directly binds to the promoters of somatic-enriched piRNA factors such as fs(1)Yb , nxf2 , panx , and armi , as well as the flamenco piRNA cluster, a major locus for TE silencing in somatic cells. Depletion of Tj in somatic follicle cells results in a significant downregulation of these piRNA factors, a complete loss of flam expression and de-repression of gypsy -family TEs, which have gained the ability to activate in ovarian somatic cells allowing them to infect germ cells and be transmitted to future generations. We have identified an enhancer carrying Tj binding motifs located downstream of the flam promoter that is essential for robust and tissue-specific flam expression in somatic follicle cells of the adult ovary. This work uncovers a previously unappreciated layer of transcriptional regulation of the piRNA pathway, and we propose that the arms race between the host and TEs has driven the evolution of promoters in piRNA genes and clusters to respond to a unique transcription factor thereby ensuring efficient silencing of gypsy -family TEs. Highlights: Traffic jam (Tj) acts as a master regulator of the somatic piRNA pathway in Drosophila . Tj directly controls the expression of the flamenco piRNA cluster, crucial for transposon silencing. Tj regulates a network of piRNA pathway genes, mirroring the gene-regulatory mechanism of A-MYB in the mouse testis.Cis-regulatory elements with Tj motifs are arranged in a palindromic sequence.
RESUMO
It is only partially understood how constitutive allelic methylation at imprinting control regions (ICRs) interacts with other regulation levels to drive timely parental allele-specific expression along large imprinted domains. The Peg13-Kcnk9 domain is an imprinted domain with important brain functions. To gain insights into its regulation during neural commitment, we performed an integrative analysis of its allele-specific epigenetic, transcriptomic, and cis-spatial organization using a mouse stem cell-based corticogenesis model that recapitulates the control of imprinted gene expression during neurodevelopment. We found that, despite an allelic higher-order chromatin structure associated with the paternally CTCF-bound Peg13 ICR, enhancer-Kcnk9 promoter contacts occurred on both alleles, although they were productive only on the maternal allele. This observation challenges the canonical model in which CTCF binding isolates the enhancer and its target gene on either side and suggests a more nuanced role for allelic CTCF binding at some ICRs.
Assuntos
Metilação de DNA , Impressão Genômica , Alelos , Metilação de DNA/genética , Impressão Genômica/genética , Regiões Promotoras Genéticas/genética , Animais , CamundongosRESUMO
Most patients with pseudohypoparathyroidism type 1b (PHP-1b) display a loss of imprinting (LOI) encompassing the GNAS locus resulting in PTH resistance. In other imprinting disorders, such as Russell-Silver or Beckwith-Wiedemann syndrome, we and others have shown that the LOI is not restricted to one imprinted locus but may affect other imprinted loci for some patients. Therefore, we hypothesized that patients with PHP-1b might present multilocus imprinting defects. We investigated, in 63 patients with PHP-1b, the methylation pattern of eight imprinted loci: GNAS, ZAC1, PEG1/MEST, ICR1, and ICR2 on chromosome 11p15, SNRPN, DLK1/GTL2 IG-DMR, and L3MBTL1. We found multilocus imprinting defects in four PHP-1b patients carrying broad LOI at the GNAS locus (1) simultaneous hypermethylation at L3MBTL1 differentially methylated region 3 (DMR3), and hypomethylation at PEG1/MEST DMR (n = 1), (2) hypermethylation at the L3MBTL1 (DMR3) (n = 1) and at the DLK1/GTL2 IG-DMR (n = 1), and (3) hypomethylation at the L3MBTL1 DMR3 (n = 1). We suggest that mechanisms underlying multilocus imprinting defects in PHP-1b differ from those of other imprinting disorders having only multilocus loss of methylation. Furthermore, our results favor the hypothesis of "epidominance", that is, the phenotype is controlled by the most severely affected imprinted locus.
Assuntos
Metilação de DNA , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Impressão Genômica , Polimorfismo de Nucleotídeo Único , Pseudo-Hipoparatireoidismo/genética , Cromograninas , Estudos de Coortes , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Humanos , Pseudo-Hipoparatireoidismo/metabolismoRESUMO
Most Drosophila transposable elements are LTR retrotransposons, some of which belong to the genus Errantivirus and share structural and functional characteristics with vertebrate endogenous retroviruses. Like endogenous retroviruses, it is unclear whether errantiviruses retain some infectivity and transposition capacity. We created conditions where control of the Drosophila ZAM errantivirus through the piRNA pathway was abolished leading to its de novo reactivation in somatic gonadal cells. After reactivation, ZAM invaded the oocytes and severe fertility defects were observed. While ZAM expression persists in the somatic gonadal cells, the germline then set up its own adaptive genomic immune response by producing piRNAs against the constantly invading errantivirus, restricting invasion. Our results suggest that although errantiviruses are continuously repressed by the piRNA pathway, they may retain their ability to infect the germline and transpose, thus allowing them to efficiently invade the germline if they are expressed.
Assuntos
Proteínas de Drosophila , Retrovirus Endógenos , Animais , Feminino , Drosophila/genética , Drosophila/metabolismo , Ovário/metabolismo , Drosophila melanogaster/genética , Células Germinativas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Elementos de DNA Transponíveis/genéticaRESUMO
BACKGROUND: Pseudohypoparathyroidism type Ib (PHP-Ib) is due to epigenetic changes at the imprinted GNAS locus, including loss of methylation at the A/B differentially methylated region (DMR) and sometimes at the XL and AS DMRs and gain of methylation at the NESP DMR. OBJECTIVE: To investigate if quantitative measurement of the methylation at the GNAS DMRs identifies subtypes of PHP-Ib. DESIGN AND METHODS: In 19 patients with PHP-Ib and 7 controls, methylation was characterised at the four GNAS DMRs through combined bisulfite restriction analysis and quantified through cytosine specific real-time PCR in blood lymphocyte DNA. RESULTS: A principal component analysis using the per cent of methylation at seven cytosines of the GNAS locus provided three clusters of subjects (controls n=7, autosomal dominant PHP-Ib with loss of methylation restricted to the A/B DMR n=3, and sporadic PHP-Ib with broad GNAS methylation changes n=16) that matched perfectly the combined bisulfite restriction analysis classification. Furthermore, three sub-clusters of patients with sporadic PHP-Ib, that displayed different patterns of methylation, were identified: incomplete changes at all DMRs compatible with somatic mosaicism (n=5), profound epigenetic changes at all DMRs (n=8), and unmodified methylation at XL in contrast with the other DMRs (n=3). Interestingly, parathyroid hormone concentration at the time of diagnosis correlated with the per cent of methylation at the A/B DMR. CONCLUSION: Quantitative assessment of the methylation in blood lymphocyte DNA is of clinical relevance, allows the diagnosis of PHP-Ib, and identifies subtypes of PHP-Ib. These epigenetic findings suggest mosaicism at least in some patients.
Assuntos
Metilação de DNA/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Adolescente , Adulto , Criança , Cromograninas , Epigênese Genética , Feminino , Genes Dominantes , Humanos , Masculino , Fenótipo , Pseudo-Hipoparatireoidismo/classificação , Pseudo-Hipoparatireoidismo/genética , Análise de Sequência de DNA , Pseudo-HipoparatireoidismoRESUMO
We wanted to develop a therapeutic approach against rabies disease by targeting the lyssavirus transcription/replication complex. Because this complex (nucleoprotein N-RNA template processed by the L polymerase and its cofactor, the phosphoprotein P) is similar to that of other negative-strand RNA viruses, we aimed to design broad-spectrum antiviral drugs that could be used as a complement to postexposure vaccination and immunotherapy. Recent progress in understanding the structure/function of the rabies virus P, N, and L proteins predicts that the amino-terminal end of P is an excellent target for destabilizing the replication complex because it interacts with both L (for positioning onto the N-RNA template) and N (for keeping N soluble, as needed for viral RNA encapsidation). Thus, peptides mimicking various lengths of the amino-terminal end of P have been evaluated, as follows: (i) for binding properties to the N-P-L partners by the two-hybrid method; (ii) for their capacity to inhibit the transcription/replication of a rabies virus minigenome encoding luciferase in BHK-21-T7 cells; and (iii) for their capacity to inhibit rabies virus infection of BHK-21-T7 cells and of two derivatives of the neuronal SK-N-SH cell line. Peptides P60 and P57 (the first 60 and first 57 NH2 residues of P, respectively) exhibited a rapid, strong, and long-lasting inhibitory potential on luciferase expression (>95% from 24 h to 55 h). P42 was less efficient in its inhibition level (75% for 18 to 30 h) and duration (40% after 48 h). The most promising peptides were synthesized in tandem with the Tat sequence, allowing cell penetration. Their inhibitory effects were observed on BHK-21-T7 cells infected with rabies virus and Lagos bat virus but not with vesicular stomatitis virus. In neuronal cells, a significant inhibition of both nucleocapsid inclusions and rabies virus release was observed.
Assuntos
Antivirais/farmacologia , Peptídeos/farmacologia , Fosfoproteínas/química , Vírus da Raiva/efeitos dos fármacos , Proteínas Estruturais Virais/química , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/síntese química , Antivirais/química , Linhagem Celular , Linhagem Celular Tumoral , Cricetinae , Humanos , Imunoprecipitação , Chaperonas Moleculares , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/virologia , Peptídeos/síntese química , Peptídeos/química , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Vírus da Raiva/patogenicidade , Técnicas do Sistema de Duplo-Híbrido , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/metabolismoRESUMO
Transposable elements (TEs) are long-term residents of eukaryotic genomes that make up a large portion of these genomes. They can be considered as perfectly fine members of genomes replicating with resident genes and being transmitted vertically to the next generation. However, unlike regular genes, TEs have the ability to send new copies to new sites. As such, they have been considered as parasitic members ensuring their own replication. In another view, TEs may also be considered as symbiotic sequences providing shared benefits after mutualistic interactions with their host genome. In this review, we recall the relationship between TEs and their host genome and discuss why transient relaxation of TE silencing within specific developmental windows may be useful for both.
Assuntos
Elementos de DNA Transponíveis/genética , Genoma , Células Germinativas/metabolismo , Animais , Desenvolvimento Embrionário/genética , Epigênese Genética , Humanos , Modelos BiológicosRESUMO
CONTEXT: Pseudohypoparathyroidism (PHP) type Ia is a rare maternally transmitted disease due to maternal loss-of-function mutations of GNAS, the gene encoding Galphas, the alpha-stimulatory subunit of the G protein. Affected individuals display hormonal resistance (mainly PTH and TSH resistance) and Albright hereditary osteodystrophy. PHP type Ib (PHP-Ib), usually defined by isolated renal resistance to PTH and sometimes mild TSH resistance, is due to a maternal loss of GNAS exon A/B methylation, leading to decreased Galphas expression in specific tissues. OBJECTIVE AND RESULTS: We report a girl with obvious Albright osteodystrophy features, PTH resistance, normal Galphas bioactivity in red blood cells, yet no loss-of-function mutation in the GNAS coding sequence (exons 1-13). The methylation analysis of the four GNAS differentially methylated regions, i.e. NESP, AS, XL, and A/B, revealed broad methylation changes at all differentially methylated regions, including GNAS exon A/B, leading to a paternal epigenotype on both alleles. CONCLUSIONS: This observation suggests that: 1) the decreased expression of Galphas due to GNAS epimutations is not restricted to the renal tubule but may affect nonimprinted tissues like bone; 2) PHP-Ib is a heterogeneous disorder that should lead to studying GNAS epigenotype in patients with PHP and no mutation in GNAS exons 1-13, regardless of their physical features.
Assuntos
Epigênese Genética , Displasia Fibrosa Poliostótica/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Mutação , Hormônio Paratireóideo/fisiologia , Pseudo-Hipoparatireoidismo/genética , Criança , Cromograninas , Feminino , HumanosRESUMO
Despite the high efficiency of tyrosine kinase inhibitors (TKI), some patients with chronic myeloid leukemia (CML) will display residual disease that can become resistant to treatment, indicating intraclonal heterogeneity in chronic-phase CML (CP-CML). To determine the basis of this heterogeneity, we conducted the first exhaustive characterization of the DNA methylation pattern of sorted CP-CML CD34+ CD15- (immature) and CD34- CD15+ (mature) cells at diagnosis (prior to any treatment) and compared it to that of CD34+ CD15- and CD34- CD15+ cells isolated from healthy donors (HD). In both cell types, we identified several hundreds of differentially methylated regions (DMRs) showing DNA methylation changes between CP-CML and HD samples, with only a subset of them in common between CD34+ CD15- and CD34- CD15+ cells. This suggested DNA methylation variability within the same CML clone. We also identified 70 genes that could be aberrantly repressed upon hypermethylation and 171 genes that could be aberrantly expressed upon hypomethylation of some of these DMRs in CP-CML cells, among which 18 and 81, respectively, were in CP-CML CD34+ CD15- cells only. We then validated the DNA methylation and expression defects of selected candidate genes. Specifically, we identified GAS2, a candidate oncogene, as a new example of gene the hypomethylation of which is associated with robust overexpression in CP-CML cells. Altogether, we demonstrated that DNA methylation abnormalities exist at early stages of CML and can affect the transcriptional landscape of malignant cells. These observations could lead to the development of combination treatments with epigenetic drugs and TKI for CP-CML.
Assuntos
Antígenos CD34/metabolismo , Metilação de DNA/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Antígenos CD15/metabolismo , Transcrição Gênica , Adulto , Idoso , Idoso de 80 Anos ou mais , Ilhas de CpG/genética , Feminino , Regulação Leucêmica da Expressão Gênica , Estudos de Associação Genética , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas/genética , Adulto JovemRESUMO
BACKGROUND: Previously, a role was demonstrated for transcription in the acquisition of DNA methylation at imprinted control regions in oocytes. Definition of the oocyte DNA methylome by whole genome approaches revealed that the majority of methylated CpG islands are intragenic and gene bodies are hypermethylated. Yet, the mechanisms by which transcription regulates DNA methylation in oocytes remain unclear. Here, we systematically test the link between transcription and the methylome. RESULTS: We perform deep RNA-Seq and de novo transcriptome assembly at different stages of mouse oogenesis. This reveals thousands of novel non-annotated genes, as well as alternative promoters, for approximately 10 % of reference genes expressed in oocytes. In addition, a large fraction of novel promoters coincide with MaLR and ERVK transposable elements. Integration with our transcriptome assembly reveals that transcription correlates accurately with DNA methylation and accounts for approximately 85-90 % of the methylome. We generate a mouse model in which transcription across the Zac1/Plagl1 locus is abrogated in oocytes, resulting in failure of DNA methylation establishment at all CpGs of this locus. ChIP analysis in oocytes reveals H3K4me2 enrichment at the Zac1 imprinted control region when transcription is ablated, establishing a connection between transcription and chromatin remodeling at CpG islands by histone demethylases. CONCLUSIONS: By precisely defining the mouse oocyte transcriptome, this work not only highlights transcription as a cornerstone of DNA methylation establishment in female germ cells, but also provides an important resource for developmental biology research.
Assuntos
Metilação de DNA , Oócitos/metabolismo , Transcriptoma , Animais , Proteínas de Ciclo Celular/genética , Montagem e Desmontagem da Cromatina , Ilhas de CpG , Elementos de DNA Transponíveis , Feminino , Perfilação da Expressão Gênica , Genes Supressores de Tumor , Impressão Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Camundongos Transgênicos , Análise de Sequência de RNA , Fatores de Transcrição/genética , Sítio de Iniciação de TranscriçãoRESUMO
CONTEXT: GNAS is one of few genetic loci that undergo allelic-specific methylation resulting in the parent-specific expression of at least four different transcripts. Due to monoallelic expression, heterozygous GNAS mutations affecting either paternally or maternally derived transcripts cause different forms of pseudohypoparathyroidism (PHP), including autosomal-dominant PHP type Ib (AD-PHP1B) associated with loss of methylation (LOM) at exon A/B alone or sporadic PHP1B (sporPHP1B) associated with broad GNAS methylation changes. Similar to effects other imprinted genes have on early development, we recently observed severe intrauterine growth retardation in newborns, later diagnosed with pseudopseudohypoparathyroidism (PPHP) because of paternal GNAS loss-of-function mutations. OBJECTIVES: This study aimed to determine whether GNAS methylation abnormalities affect intrauterine growth. PATIENTS AND METHODS: Birth parameters were collected of patients who later developed sporPHP1B or AD-PHP1B, and of their healthy siblings. Comparisons were made to newborns affected by PPHP or PHP1A. RESULTS: As newborns, AD-PHP1B patients were bigger than their healthy siblings and well above the reference average; increased sizes were particularly evident if the mothers were unaffected carriers of STX16 deletions. SporPHP1B newborns were slightly above average for weight and length, but their overgrowth was less pronounced than that of AD-PHP1B newborns from unaffected mothers. CONCLUSION: LOM at GNAS exon A/B due to maternal STX16 deletions and the resulting biallelic A/B expression are associated with enhanced fetal growth. These findings are distinctly different from those of PPHP patients with paternal GNAS exons 2-13 mutations, whose birth parameters are almost 4.5 z-scores below those of AD-PHP1B patients born to healthy mothers.
Assuntos
Metilação de DNA , Desenvolvimento Fetal/genética , Macrossomia Fetal/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Peso ao Nascer/genética , Cromograninas , Éxons/genética , Feminino , Deleção de Genes , Humanos , Recém-Nascido , Masculino , Gravidez , Pseudo-Hipoparatireoidismo/genética , Estudos Retrospectivos , Sintaxina 16/genética , Pseudo-HipoparatireoidismoRESUMO
Data from the literature indicate that genomic imprint marks are disturbed in human pluripotent stem cells (PSCs). GNAS is an imprinted locus that produces one biallelic (Gsα) and four monoallelic (NESP55, GNAS-AS1, XLsα, and A/B) transcripts due to differential methylation of their promoters (DMR). To document imprinting at the GNAS locus in PSCs, we studied GNAS locus DMR methylation and transcript (NESP55, XLsα, and A/B) expression in human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) derived from two human fibroblasts and their progenies. Results showed that (1) methylation at the GNAS locus DMRs is DMR and cell line specific, (2) changes in allelic transcript expression can be independent of a change in allele-specific DNA methylation, and (3) interestingly, methylation at A/B DMR is correlated with A/B transcript expression. These results indicate that these models are valuable to study the mechanisms controlling GNAS methylation, factors involved in transcript expression, and possibly mechanisms involved in the pathophysiology of pseudohypoparathyroidism type 1B.
Assuntos
Metilação de DNA , Células-Tronco Embrionárias/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Alelos , Linhagem Celular , Cromograninas , Células-Tronco Embrionárias/citologia , Loci Gênicos , Impressão Genômica , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Polimorfismo Genético , Regiões Promotoras Genéticas , Transcrição GênicaRESUMO
GNAS (guanine nucleotide-binding protein, α stimulating) is a complex imprinted locus coding, besides the α-stimulatory subunit of the G protein, the paternally (extra-large, antisense and A/B) and maternally (neuroendocrine secretory protein) transcripts. Heterozygous mutations in the coding sequence of GNAS produce dominant phenotypes (combination of resistances to hormones signaling through G-protein-coupled receptors, osteodystrophy and obesity) that depend on the parental origin of the mutated allele. Likewise, alterations in the methylation at promoters of GNAS transcripts, associated or not with deletions of imprinting control regions in the nearby STX16 gene or within GNAS, prompt resistance to parathormone when affecting the maternal allele. Therefore, imprinting of GNAS is the determining factor for the variability of the phenotype. Knowledge of the various phenotypes is necessary for genetic counseling as well as an appropriate therapeutic balance between regular follow-up, prevention of disease complications and iatrogeny.
Assuntos
Alelos , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Doenças Genéticas Inatas/genética , Impressão Genômica , Cromograninas , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Doenças Genéticas Inatas/metabolismo , Humanos , Mutação , Fases de Leitura Aberta , Sintaxina 16/genética , Sintaxina 16/metabolismoRESUMO
The genomic RNA of rabies virus is always complexed with the viral nucleoprotein (N). This N-RNA complex is the template for viral transcription and replication. The viral phosphoprotein (P) has two functions during the infection process: it binds through its carboxy-terminus to N in the N-RNA complex and at the same time with an amino-terminal domain to the polymerase and in this way fixes the polymerase to its template. The second function of P is to bind to newly produced N in the infected cell in order to prevent that N binds non-specifically and irreversibly to cellular RNA. In order to identify the part of the phosphoprotein that binds to N and keeps the latter soluble, we isolated the N-P complex, performed sequential protease digestions, and determined the identity of the remaining N and P peptides in the purified digested complex. Although the digestion steps removed short sequences of N, most of N remained intact and soluble, indicating that the overall structure was not affected. Most of P, including the carboxy-terminal N-RNA-binding domain, was removed during the first digestion step. N-terminal sequencing and mass spectrometry analysis identified a P peptide containing residues 4-40 that remained associated with N. Coexpression and coimmunoprecipitation experiments and yeast two-hybrid experiments showed that this peptide alone could bind to N in vivo.