Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(21): e2400740121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38743629

RESUMO

The biogenesis of iron-sulfur (Fe/S) proteins entails the synthesis and trafficking of Fe/S clusters, followed by their insertion into target apoproteins. In eukaryotes, the multiple steps of biogenesis are accomplished by complex protein machineries in both mitochondria and cytosol. The underlying biochemical pathways have been elucidated over the past decades, yet the mechanisms of cytosolic [2Fe-2S] protein assembly have remained ill-defined. Similarly, the precise site of glutathione (GSH) requirement in cytosolic and nuclear Fe/S protein biogenesis is unclear, as is the molecular role of the GSH-dependent cytosolic monothiol glutaredoxins (cGrxs). Here, we investigated these questions in human and yeast cells by various in vivo approaches. [2Fe-2S] cluster assembly of cytosolic target apoproteins required the mitochondrial ISC machinery, the mitochondrial transporter Atm1/ABCB7 and GSH, yet occurred independently of both the CIA system and cGrxs. This mechanism was strikingly different from the ISC-, Atm1/ABCB7-, GSH-, and CIA-dependent assembly of cytosolic-nuclear [4Fe-4S] proteins. One notable exception to this cytosolic [2Fe-2S] protein maturation pathway defined here was yeast Apd1 which used the CIA system via binding to the CIA targeting complex through its C-terminal tryptophan. cGrxs, although attributed as [2Fe-2S] cluster chaperones or trafficking proteins, were not essential in vivo for delivering [2Fe-2S] clusters to either CIA components or target apoproteins. Finally, the most critical GSH requirement was assigned to Atm1-dependent export, i.e. a step before GSH-dependent cGrxs function. Our findings extend the general model of eukaryotic Fe/S protein biogenesis by adding the molecular requirements for cytosolic [2Fe-2S] protein maturation.


Assuntos
Citosol , Glutarredoxinas , Glutationa , Proteínas Ferro-Enxofre , Mitocôndrias , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Citosol/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Humanos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Glutationa/metabolismo , Mitocôndrias/metabolismo , Glutarredoxinas/metabolismo , Glutarredoxinas/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas Mitocondriais/metabolismo
2.
Nat Chem Biol ; 19(2): 206-217, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36280795

RESUMO

Ferredoxins comprise a large family of iron-sulfur (Fe-S) proteins that shuttle electrons in diverse biological processes. Human mitochondria contain two isoforms of [2Fe-2S] ferredoxins, FDX1 (aka adrenodoxin) and FDX2, with known functions in cytochrome P450-dependent steroid transformations and Fe-S protein biogenesis. Here, we show that only FDX2, but not FDX1, is involved in Fe-S protein maturation. Vice versa, FDX1 is specific not only for steroidogenesis, but also for heme a and lipoyl cofactor biosyntheses. In the latter pathway, FDX1 provides electrons to kickstart the radical chain reaction catalyzed by lipoyl synthase. We also identified lipoylation as a target of the toxic antitumor copper ionophore elesclomol. Finally, the striking target specificity of each ferredoxin was assigned to small conserved sequence motifs. Swapping these motifs changed the target specificity of these electron donors. Together, our findings identify new biochemical tasks of mitochondrial ferredoxins and provide structural insights into their functional specificity.


Assuntos
Ferredoxinas , Proteínas Ferro-Enxofre , Humanos , Isoformas de Proteínas/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Mitocôndrias/metabolismo , Proteínas Ferro-Enxofre/metabolismo
3.
J Biol Chem ; 298(10): 102465, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36075292

RESUMO

Mitochondria harbor the bacteria-inherited iron-sulfur cluster assembly (ISC) machinery to generate [2Fe-2S; iron-sulfur (Fe-S)] and [4Fe-4S] proteins. In yeast, assembly of [4Fe-4S] proteins specifically involves the ISC proteins Isa1, Isa2, Iba57, Bol3, and Nfu1. Functional defects in their human equivalents cause the multiple mitochondrial dysfunction syndromes, severe disorders with a broad clinical spectrum. The bacterial Iba57 ancestor YgfZ was described to require tetrahydrofolate (THF) for its function in the maturation of selected [4Fe-4S] proteins. Both YgfZ and Iba57 are structurally related to an enzyme family catalyzing THF-dependent one-carbon transfer reactions including GcvT of the glycine cleavage system. On this basis, a universally conserved folate requirement in ISC-dependent [4Fe-4S] protein biogenesis was proposed. To test this idea for mitochondrial Iba57, we performed genetic and biochemical studies in Saccharomyces cerevisiae, and we solved the crystal structure of Iba57 from the thermophilic fungus Chaetomium thermophilum. We provide three lines of evidence for the THF independence of the Iba57-catalyzed [4Fe-4S] protein assembly pathway. First, yeast mutants lacking folate show no defect in mitochondrial [4Fe-4S] protein maturation. Second, the 3D structure of Iba57 lacks many of the side-chain contacts to THF as defined in GcvT, and the THF-binding pocket is constricted. Third, mutations in conserved Iba57 residues that are essential for THF-dependent catalysis in GcvT do not impair Iba57 function in vivo, in contrast to an exchange of the invariant, surface-exposed cysteine residue. We conclude that mitochondrial Iba57, despite structural similarities to both YgfZ and THF-binding proteins, does not utilize folate for its function.


Assuntos
Proteínas Ferro-Enxofre , Proteínas de Saccharomyces cerevisiae , Humanos , Proteínas de Transporte/metabolismo , Ácido Fólico/metabolismo , Ferro/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Tetra-Hidrofolatos/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(34): 20555-20565, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32817474

RESUMO

The essential process of iron-sulfur (Fe/S) cluster assembly (ISC) in mitochondria occurs in three major phases. First, [2Fe-2S] clusters are synthesized on the scaffold protein ISCU2; second, these clusters are transferred to the monothiol glutaredoxin GLRX5 by an Hsp70 system followed by insertion into [2Fe-2S] apoproteins; third, [4Fe-4S] clusters are formed involving the ISC proteins ISCA1-ISCA2-IBA57 followed by target-specific apoprotein insertion. The third phase is poorly characterized biochemically, because previous in vitro assembly reactions involved artificial reductants and lacked at least one of the in vivo-identified ISC components. Here, we reconstituted the maturation of mitochondrial [4Fe-4S] aconitase without artificial reductants and verified the [2Fe-2S]-containing GLRX5 as cluster donor. The process required all components known from in vivo studies (i.e., ISCA1-ISCA2-IBA57), yet surprisingly also depended on mitochondrial ferredoxin FDX2 and its NADPH-coupled reductase FDXR. Electrons from FDX2 catalyze the reductive [2Fe-2S] cluster fusion on ISCA1-ISCA2 in an IBA57-dependent fashion. This previously unidentified electron transfer was occluded during previous in vivo studies due to the earlier FDX2 requirement for [2Fe-2S] cluster synthesis on ISCU2. The FDX2 function is specific, because neither FDX1, a mitochondrial ferredoxin involved in steroid production, nor other cellular reducing systems, supported maturation. In contrast to ISC factor-assisted [4Fe-4S] protein assembly, [2Fe-2S] cluster transfer from GLRX5 to [2Fe-2S] apoproteins occurred spontaneously within seconds, clearly distinguishing the mechanisms of [2Fe-2S] and [4Fe-4S] protein maturation. Our study defines the physiologically relevant mechanistic action of late-acting ISC factors in mitochondrial [4Fe-4S] cluster synthesis, trafficking, and apoprotein insertion.


Assuntos
Proteínas Ferro-Enxofre/metabolismo , Mitocôndrias/metabolismo , Aconitato Hidratase/metabolismo , Chaetomium , Humanos
5.
J Cell Sci ; 131(12)2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29848660

RESUMO

Fe-S clusters act as co-factors of proteins with diverse functions, for example, in DNA repair. Downregulation of the cytosolic iron-sulfur protein assembly (CIA) machinery promotes genomic instability through the inactivation of multiple DNA repair pathways. Furthermore, CIA deficiencies are associated with so far unexplained mitotic defects. Here, we show that CIA2B (also known as FAM96B) and MMS19, constituents of the CIA targeting complex involved in facilitating Fe-S cluster insertion into cytosolic and nuclear target proteins, colocalize with components of the mitotic machinery. Downregulation of CIA2B and MMS19 impairs the mitotic cycle. We identify the chromokinesin KIF4A as a mitotic component involved in these effects. KIF4A binds a Fe-S cluster in vitro through its conserved cysteine-rich domain. We demonstrate in vivo that this domain is required for the mitosis-related KIF4A localization and for the mitotic defects associated with KIF4A knockout. KIF4A is the first identified mitotic component carrying such a post-translational modification. These findings suggest that the lack of Fe-S clusters in KIF4A upon downregulation of the CIA targeting complex contributes to the mitotic defects.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Proteínas Nucleares/metabolismo , Humanos , Mitose
6.
Biol Chem ; 401(12): 1407-1428, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33031050

RESUMO

The physiological roles of the intracellular iron and redox regulatory systems are intimately linked. Iron is an essential trace element for most organisms, yet elevated cellular iron levels are a potent generator and amplifier of reactive oxygen species and redox stress. Proteins binding iron or iron-sulfur (Fe/S) clusters, are particularly sensitive to oxidative damage and require protection from the cellular oxidative stress protection systems. In addition, key components of these systems, most prominently glutathione and monothiol glutaredoxins are involved in the biogenesis of cellular Fe/S proteins. In this review, we address the biochemical role of glutathione and glutaredoxins in cellular Fe/S protein assembly in eukaryotic cells. We also summarize the recent developments in the role of cytosolic glutaredoxins in iron metabolism, in particular the regulation of fungal iron homeostasis. Finally, we discuss recent insights into the interplay of the cellular thiol redox balance and oxygen with that of Fe/S protein biogenesis in eukaryotes.


Assuntos
Glutarredoxinas/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Ferro/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Oxirredução
7.
Biochim Biophys Acta Mol Cell Res ; 1865(9): 1250-1259, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29902489

RESUMO

Numerous proteins require iron­sulfur (Fe-S) clusters as cofactors for their function. Their biogenesis is a multi-step process occurring in the cytosol and mitochondria of all eukaryotes and additionally in plastids of photosynthetic eukaryotes. A basic model of Fe-S protein maturation in mitochondria has been obtained based on studies achieved in mammals and yeast, yet some molecular details, especially of the late steps, still require investigation. In particular, the late-acting biogenesis factors in plant mitochondria are poorly understood. In this study, we expressed the factors belonging to NFU, BOLA, SUFA/ISCA and IBA57 families in the respective yeast mutant strains. Expression of the Arabidopsis mitochondrial orthologs was usually sufficient to rescue the growth defects observed on specific media and/or to restore the abundance or activity of the defective Fe-S or lipoic acid-dependent enzymes. These data demonstrate that the plant mitochondrial counterparts, including duplicated isoforms, likely retained their ancestral functions. In contrast, the SUFA1 and IBA57.2 plastidial isoforms cannot rescue the lysine and glutamate auxotrophies of the respective isa1-isa2Δ and iba57Δ strains or of the isa1-isa2-iba57Δ triple mutant when expressed in combination. This suggests a specialization of the yeast mitochondrial and plant plastidial factors in these late steps of Fe-S protein biogenesis, possibly reflecting substrate-specific interactions in these different compartments.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Mitocondriais/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Clonagem Molecular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Evolução Molecular , Ferro/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Saccharomyces cerevisiae/genética , Enxofre/metabolismo
8.
EMBO J ; 33(19): 2261-76, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25092765

RESUMO

Balance of physiological levels of iron is essential for every organism. In Aspergillus fumigatus and other fungal pathogens, the transcription factor HapX mediates adaptation to iron limitation and consequently virulence by repressing iron consumption and activating iron uptake. Here, we demonstrate that HapX is also essential for iron resistance via activating vacuolar iron storage. We identified HapX protein domains that are essential for HapX functions during either iron starvation or high-iron conditions. The evolutionary conservation of these domains indicates their wide-spread role in iron sensing. We further demonstrate that a HapX homodimer and the CCAAT-binding complex (CBC) cooperatively bind an evolutionary conserved DNA motif in a target promoter. The latter reveals the mode of discrimination between general CBC and specific HapX/CBC target genes. Collectively, our study uncovers a novel regulatory mechanism mediating both iron resistance and adaptation to iron starvation by the same transcription factor complex with activating and repressing functions depending on ambient iron availability.


Assuntos
Adaptação Fisiológica , Aspergilose/metabolismo , Aspergillus fumigatus/patogenicidade , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Ferro/metabolismo , Fatores de Transcrição/metabolismo , Aspergilose/genética , Aspergilose/virologia , Western Blotting , Imunoprecipitação da Cromatina , Proteínas Fúngicas/genética , Homeostase , Imunoprecipitação , Inanição , Ressonância de Plasmônio de Superfície , Fatores de Transcrição/genética , Vacúolos/metabolismo , Virulência
9.
J Med Genet ; 54(12): 815-824, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29079705

RESUMO

BACKGROUND: Hereditary myopathy with lactic acidosis and myopathy with deficiency of succinate dehydrogenase and aconitase are variants of a recessive disorder characterised by childhood-onset early fatigue, dyspnoea and palpitations on trivial exercise. The disease is non-progressive, but life-threatening episodes of widespread weakness, metabolic acidosis and rhabdomyolysis may occur. So far, this disease has been molecularly defined only in Swedish patients, all homozygous for a deep intronic splicing affecting mutation in ISCU encoding a scaffold protein for the assembly of iron-sulfur (Fe-S) clusters. A single Scandinavian family was identified with a different mutation, a missense change in compound heterozygosity with the common intronic mutation. The aim of the study was to identify the genetic defect in our proband. METHODS: A next-generation sequencing (NGS) approach was carried out on an Italian male who presented in childhood with ptosis, severe muscle weakness and exercise intolerance. His disease was slowly progressive, with partial recovery between episodes. Patient's specimens and yeast models were investigated. RESULTS: Histochemical and biochemical analyses on muscle biopsy showed multiple defects affecting mitochondrial respiratory chain complexes. We identified a single heterozygous mutation p.Gly96Val in ISCU, which was absent in DNA from his parents indicating a possible de novo dominant effect in the patient. Patient fibroblasts showed normal levels of ISCU protein and a few variably affected Fe-S cluster-dependent enzymes. Yeast studies confirmed both pathogenicity and dominance of the identified missense mutation. CONCLUSION: We describe the first heterozygous dominant mutation in ISCU which results in a phenotype reminiscent of the recessive disease previously reported.


Assuntos
Genes Dominantes , Proteínas Ferro-Enxofre/genética , Miopatias Mitocondriais/diagnóstico , Miopatias Mitocondriais/genética , Mutação , Sequência de Aminoácidos , Biomarcadores , Biópsia , Biologia Computacional/métodos , Eletroencefalografia , Eletromiografia , Fibroblastos/metabolismo , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Proteínas Ferro-Enxofre/química , Imageamento por Ressonância Magnética , Masculino , Modelos Moleculares , Músculo Esquelético/patologia , Linhagem , Fenótipo , Análise de Sequência de DNA , Relação Estrutura-Atividade , Adulto Jovem
10.
Proc Natl Acad Sci U S A ; 112(44): 13735-40, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26483494

RESUMO

The iron-sulfur cluster (ISC) is an ancient and essential cofactor of many proteins involved in electron transfer and metabolic reactions. In Arabidopsis, three pathways exist for the maturation of iron-sulfur proteins in the cytosol, plastids, and mitochondria. We functionally characterized the role of mitochondrial glutaredoxin S15 (GRXS15) in biogenesis of ISC containing aconitase through a combination of genetic, physiological, and biochemical approaches. Two Arabidopsis T-DNA insertion mutants were identified as null mutants with early embryonic lethal phenotypes that could be rescued by GRXS15. Furthermore, we showed that recombinant GRXS15 is able to coordinate and transfer an ISC and that this coordination depends on reduced glutathione (GSH). We found the Arabidopsis GRXS15 able to complement growth defects based on disturbed ISC protein assembly of a yeast Δgrx5 mutant. Modeling of GRXS15 onto the crystal structures of related nonplant proteins highlighted amino acid residues that after mutation diminished GSH and subsequently ISC coordination, as well as the ability to rescue the yeast mutant. When used for plant complementation, one of these mutant variants, GRXS15K83/A, led to severe developmental delay and a pronounced decrease in aconitase activity by approximately 65%. These results indicate that mitochondrial GRXS15 is an essential protein in Arabidopsis, required for full activity of iron-sulfur proteins.


Assuntos
Arabidopsis/metabolismo , Glutarredoxinas/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Mitocôndrias/metabolismo , Arabidopsis/crescimento & desenvolvimento , Teste de Complementação Genética
11.
Biochem J ; 455(1): 57-65, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23800229

RESUMO

Mitochondrial iron uptake is of key importance both for organelle function and cellular iron homoeostasis. The mitochondrial carrier family members Mrs3 and Mrs4 (homologues of vertebrate mitoferrin) function in organellar iron supply, yet other low efficiency transporters may exist. In Saccharomyces cerevisiae, overexpression of RIM2 (MRS12) encoding a mitochondrial pyrimidine nucleotide transporter can overcome the iron-related phenotypes of strains lacking both MRS3 and MRS4. In the present study we show by in vitro transport studies that Rim2 mediates the transport of iron and other divalent metal ions across the mitochondrial inner membrane in a pyrimidine nucleotide-dependent fashion. Mutations in the proposed substrate-binding site of Rim2 prevent both pyrimidine nucleotide and divalent ion transport. These results document that Rim2 catalyses the co-import of pyrimidine nucleotides and divalent metal ions including ferrous iron. The deletion of RIM2 alone has no significant effect on mitochondrial iron supply, Fe-S protein maturation and haem synthesis. However, RIM2 deletion in mrs3/4Δ cells aggravates their Fe-S protein maturation defect. We conclude that under normal physiological conditions Rim2 does not play a significant role in mitochondrial iron acquisition, yet, in the absence of the main iron transporters Mrs3 and Mrs4, this carrier can supply the mitochondrial matrix with iron in a pyrimidine-nucleotide-dependent fashion.


Assuntos
Ferro/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas de Transporte de Nucleotídeos/metabolismo , Nucleotídeos de Pirimidina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , Transporte Biológico , Proteínas de Transporte de Cátions/deficiência , Proteínas de Transporte de Cátions/genética , Cátions Bivalentes , Heme/biossíntese , Mitocôndrias/genética , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/genética , Mutação , Proteínas de Transporte de Nucleotídeos/genética , Oxirredução , Ligação Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
14.
Biochim Biophys Acta ; 1823(9): 1491-508, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22609301

RESUMO

Mitochondria play a key role in iron metabolism in that they synthesize heme, assemble iron-sulfur (Fe/S) proteins, and participate in cellular iron regulation. Here, we review the latter two topics and their intimate connection. The mitochondrial Fe/S cluster (ISC) assembly machinery consists of 17 proteins that operate in three major steps of the maturation process. First, the cysteine desulfurase complex Nfs1-Isd11 as the sulfur donor cooperates with ferredoxin-ferredoxin reductase acting as an electron transfer chain, and frataxin to synthesize an [2Fe-2S] cluster on the scaffold protein Isu1. Second, the cluster is released from Isu1 and transferred toward apoproteins with the help of a dedicated Hsp70 chaperone system and the glutaredoxin Grx5. Finally, various specialized ISC components assist in the generation of [4Fe-4S] clusters and cluster insertion into specific target apoproteins. Functional defects of the core ISC assembly machinery are signaled to cytosolic or nuclear iron regulatory systems resulting in increased cellular iron acquisition and mitochondrial iron accumulation. In fungi, regulation is achieved by iron-responsive transcription factors controlling the expression of genes involved in iron uptake and intracellular distribution. They are assisted by cytosolic multidomain glutaredoxins which use a bound Fe/S cluster as iron sensor and additionally perform an essential role in intracellular iron delivery to target metalloproteins. In mammalian cells, the iron regulatory proteins IRP1, an Fe/S protein, and IRP2 act in a post-transcriptional fashion to adjust the cellular needs for iron. Thus, Fe/S protein biogenesis and cellular iron metabolism are tightly linked to coordinate iron supply and utilization. This article is part of a Special Issue entitled: Cell Biology of Metals.


Assuntos
Proteínas Ferro-Enxofre/metabolismo , Ferro/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Fungos/metabolismo , Regulação da Expressão Gênica , Heme/biossíntese , Homeostase/fisiologia , Humanos , Transporte de Íons/fisiologia , Deficiências de Ferro , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Mitocondriais/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Oxirredução , Frataxina
15.
Proc Natl Acad Sci U S A ; 107(26): 11775-80, 2010 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-20547883

RESUMO

Mammalian adrenodoxin (ferredoxin 1; Fdx1) is essential for the synthesis of various steroid hormones in adrenal glands. As a member of the [2Fe-2S] cluster-containing ferredoxin family, Fdx1 reduces mitochondrial cytochrome P450 enzymes, which then catalyze; e.g., the conversion of cholesterol to pregnenolone, aldosterone, and cortisol. The high protein sequence similarity between Fdx1 and its yeast adrenodoxin homologue (Yah1) suggested that Fdx1, like Yah1, may be involved in the biosynthesis of heme A and Fe/S clusters, two versatile and essential protein cofactors. Our study, employing RNAi technology to deplete human Fdx1, did not confirm this expectation. Instead, we identified a Fdx1-related mitochondrial protein, designated ferredoxin 2 (Fdx2) and found it to be essential for heme A and Fe/S protein biosynthesis. Unlike Fdx1, Fdx2 was unable to efficiently reduce mitochondrial cytochromes P450 and convert steroids, indicating that the two ferredoxin isoforms are highly specific for their substrates in distinct biochemical pathways. Moreover, Fdx2 deficiency had a severe impact, via impaired Fe/S protein biogenesis, on cellular iron homeostasis, leading to increased cellular iron uptake and iron accumulation in mitochondria. We conclude that mammals depend on two distinct mitochondrial ferredoxins for the specific production of either steroid hormones or heme A and Fe/S proteins.


Assuntos
Adrenodoxina/química , Adrenodoxina/metabolismo , Ferredoxinas/química , Ferredoxinas/metabolismo , Heme/biossíntese , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Esteroides/biossíntese , Adrenodoxina/antagonistas & inibidores , Adrenodoxina/genética , Ferredoxinas/antagonistas & inibidores , Ferredoxinas/genética , Células HeLa , Humanos , Ferro/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/genética , Modelos Biológicos , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade da Espécie
16.
FEBS Lett ; 597(1): 102-121, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36443530

RESUMO

Ferredoxins (FDXs) comprise a large family of iron-sulfur proteins that shuttle electrons from NADPH and FDX reductases into diverse biological processes. This review focuses on the structure, function and specificity of mitochondrial [2Fe-2S] FDXs that are related to bacterial FDXs due to their endosymbiotic inheritance. Their classical function in cytochrome P450-dependent steroid transformations was identified around 1960, and is exemplified by mammalian FDX1 (aka adrenodoxin). Thirty years later the essential function in cellular Fe/S protein biogenesis was discovered for the yeast mitochondrial FDX Yah1 that is additionally crucial for the formation of haem a and ubiquinone CoQ6 . In mammals, Fe/S protein biogenesis is exclusively performed by the FDX1 paralog FDX2, despite the high structural similarity of both proteins. Recently, additional and specific roles of human FDX1 in haem a and lipoyl cofactor biosyntheses were described. For lipoyl synthesis, FDX1 transfers electrons to the radical S-adenosyl methionine-dependent lipoyl synthase to kickstart its radical chain reaction. The high target specificity of the two mammalian FDXs is contained within small conserved sequence motifs, that upon swapping change the target selection of these electron donors.


Assuntos
Ferredoxinas , Proteínas Ferro-Enxofre , Cães , Animais , Humanos , Ferredoxinas/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Adrenodoxina/química , Adrenodoxina/metabolismo , Saccharomyces cerevisiae/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Heme/metabolismo , Mamíferos/metabolismo
17.
FEBS Lett ; 597(13): 1718-1732, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36932975

RESUMO

Systematic studies have revealed interactions between components of the Hsp90 chaperone system and Fe/S protein biogenesis or iron regulation. In addition, two chloroplast-localized DnaJ-like proteins, DJA5 and DJA6, function as specific iron donors in plastidial Fe/S protein biogenesis. Here, we used Saccharomyces cerevisiae to study the impact of both the Hsp90 chaperone and the yeast DJA5-DJA6 homologs, the essential cytosolic Ydj1, and the mitochondrial Mdj1, on cellular iron-related processes. Despite severe phenotypes induced upon depletion of these crucial proteins, there was no critical in vivo impact on Fe/S protein biogenesis or iron regulation. Importantly, unlike the plant DJA5-DJA6 iron chaperones, Ydj1 and Mdj1 did not bind iron in vivo, suggesting that these proteins use zinc for function under normal physiological conditions.


Assuntos
Proteínas Ferro-Enxofre , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ferro/metabolismo , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo
18.
J Biol Chem ; 286(48): 41205-41216, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-21987576

RESUMO

Most eukaryotes contain iron-sulfur cluster (ISC) assembly proteins related to Saccharomyces cerevisiae Isa1 and Isa2. We show here that Isa1 but not Isa2 can be functionally replaced by the bacterial relatives IscA, SufA, and ErpA. The specific function of these "A-type" ISC proteins within the framework of mitochondrial and bacterial Fe/S protein biogenesis is still unresolved. In a comprehensive in vivo analysis, we show that S. cerevisiae Isa1 and Isa2 form a complex that is required for maturation of mitochondrial [4Fe-4S] proteins, including aconitase and homoaconitase. In contrast, Isa1-Isa2 were dispensable for the generation of mitochondrial [2Fe-2S] proteins and cytosolic [4Fe-4S] proteins. Targeting of bacterial [2Fe-2S] and [4Fe-4S] ferredoxins to yeast mitochondria further supported this specificity. Isa1 and Isa2 proteins are shown to bind iron in vivo, yet the Isa1-Isa2-bound iron was not needed as a donor for de novo assembly of the [2Fe-2S] cluster on the general Fe/S scaffold proteins Isu1-Isu2. Upon depletion of the ISC assembly factor Iba57, which specifically interacts with Isa1 and Isa2, or in the absence of the major mitochondrial [4Fe-4S] protein aconitase, iron accumulated on the Isa proteins. These results suggest that the iron bound to the Isa proteins is required for the de novo synthesis of [4Fe-4S] clusters in mitochondria and for their insertion into apoproteins in a reaction mediated by Iba57. Taken together, these findings define Isa1, Isa2, and Iba57 as a specialized, late-acting ISC assembly subsystem that is specifically dedicated to the maturation of mitochondrial [4Fe-4S] proteins.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/genética , Ferro/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Mitocondriais/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Enxofre/metabolismo , Fatores de Transcrição/genética
19.
Mol Microbiol ; 81(1): 232-48, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21542867

RESUMO

Saccharomyces cerevisiae can import iron through a high-affinity system consisting of the Ftr1/Fet3-mediated reductive pathway and the siderophore-mediated non-reductive one. Expression of components of the high-affinity system is controlled by the Aft1 transcriptional factor. In this study we show that, upon oxidative stress, Aft1 is transitorily internalized into the nucleus, followed by transcription activation of components of its regulon. In these conditions, the mRNA levels of the genes of the non-reductive pathway become increased, while those of FTR1 and FET3 remain low because of destabilization of the mRNAs. Consequently, the respective protein levels also remain low. Such mRNA destabilization is mediated by the general 5'-3' mRNA decay pathway and is independent of the RNA binding protein Cth2. Yeast cells are hypersensitive to peroxides in growth conditions where only the high-affinity reductive pathway is functional for iron assimilation. On the contrary, peroxide does not affect growth when iron uptake occurs exclusively through the non-reductive pathway. This reinforces the idea that upon oxidative stress S. cerevisiae cells redirect iron assimilation through the non-reductive pathway to minimize oxidative damage by the ferrous ions, which are formed during iron import through the Ftr1/Fet3 complexes.


Assuntos
Regulação Fúngica da Expressão Gênica , Estresse Oxidativo , Estabilidade de RNA , Regulon , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Ceruloplasmina/metabolismo , Peróxido de Hidrogênio/toxicidade , Ferro/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Oxidantes/toxicidade
20.
Nat Chem Biol ; 6(10): 758-65, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20802492

RESUMO

Cytosolic and nuclear iron-sulfur (Fe-S) proteins play key roles in processes such as ribosome maturation, transcription and DNA repair-replication. For biosynthesis of their Fe-S clusters, a dedicated cytosolic Fe-S protein assembly (CIA) machinery is required. Here, we identify the essential flavoprotein Tah18 as a previously unrecognized CIA component and show by cell biological, biochemical and spectroscopic approaches that the complex of Tah18 and the CIA protein Dre2 is part of an electron transfer chain functioning in an early step of cytosolic Fe-S protein biogenesis. Electrons are transferred from NADPH via the FAD- and FMN-containing Tah18 to the Fe-S clusters of Dre2. This electron transfer chain is required for assembly of target but not scaffold Fe-S proteins, suggesting a need for reduction in the generation of stably inserted Fe-S clusters. The pathway is conserved in eukaryotes, as human Ndor1-Ciapin1 proteins can functionally replace yeast Tah18-Dre2.


Assuntos
Citosol/metabolismo , Elétrons , Proteínas Ferro-Enxofre/biossíntese , Proteínas Ferro-Enxofre/metabolismo , Oxirredutases/metabolismo , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Citosol/química , Transporte de Elétrons , Flavoproteínas/genética , Flavoproteínas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Mitocondriais/metabolismo , NADP/metabolismo , Proteínas Nucleares/biossíntese , Proteínas Nucleares/metabolismo , Oxirredutases/deficiência , Oxirredutases/genética , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Sulfurtransferases/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA