Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 107(34): 14950-7, 2010 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-20668236

RESUMO

Local Ca(2+) signaling occurring within nanometers of voltage-gated Ca(2+) (Cav) channels is crucial for CNS function, yet the molecular composition of Cav channel nano-environments is largely unresolved. Here, we used a proteomic strategy combining knockout-controlled multiepitope affinity purifications with high-resolution quantitative MS for comprehensive analysis of the molecular nano-environments of the Cav2 channel family in the whole rodent brain. The analysis shows that Cav2 channels, composed of pore-forming alpha1 and auxiliary beta subunits, are embedded into protein networks that may be assembled from a pool of approximately 200 proteins with distinct abundance, stability of assembly, and preference for the three Cav2 subtypes. The majority of these proteins have not previously been linked to Cav channels; about two-thirds are dedicated to the control of intracellular Ca(2+) concentration, including G protein-coupled receptor-mediated signaling, to activity-dependent cytoskeleton remodeling or Ca(2+)-dependent effector systems that comprise a high portion of the priming and release machinery of synaptic vesicles. The identified protein networks reflect the cellular processes that can be initiated by Cav2 channel activity and define the molecular framework for organization and operation of local Ca(2+) signaling by Cav2 channels in the brain.


Assuntos
Encéfalo/metabolismo , Canais de Cálcio/metabolismo , Sequência de Aminoácidos , Animais , Canais de Cálcio/química , Canais de Cálcio/deficiência , Canais de Cálcio/genética , Sinalização do Cálcio , Técnicas In Vitro , Camundongos , Camundongos Knockout , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos , Estabilidade Proteica , Subunidades Proteicas , Proteoma , Proteômica/métodos , Ratos
2.
Elife ; 102021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34766907

RESUMO

The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a ubiquitously expressed membrane protein consisting of ion channel and protein kinase domains. TRPM7 plays a fundamental role in the cellular uptake of divalent cations such as Zn2+, Mg2+, and Ca2+, and thus shapes cellular excitability, plasticity, and metabolic activity. The molecular appearance and operation of TRPM7 channels in native tissues have remained unresolved. Here, we investigated the subunit composition of endogenous TRPM7 channels in rodent brain by multi-epitope affinity purification and high-resolution quantitative mass spectrometry (MS) analysis. We found that native TRPM7 channels are high-molecular-weight multi-protein complexes that contain the putative metal transporter proteins CNNM1-4 and a small G-protein ADP-ribosylation factor-like protein 15 (ARL15). Heterologous reconstitution experiments confirmed the formation of TRPM7/CNNM/ARL15 ternary complexes and indicated that complex formation effectively and specifically impacts TRPM7 activity. These results open up new avenues towards a mechanistic understanding of the cellular regulation and function of TRPM7 channels.


Assuntos
Encéfalo/metabolismo , Proteômica/métodos , Canais de Cátion TRPM/genética , Animais , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Wistar , Canais de Cátion TRPM/metabolismo
3.
J Vis Exp ; (152)2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31680678

RESUMO

Proteins generally exert biological functions through interactions with other proteins, either in dynamic protein assemblies or as a part of stably formed complexes. The latter can be elegantly resolved according to molecular size using native polyacrylamide gel electrophoresis (BN-PAGE). Coupling of such separations to sensitive mass spectrometry (BN-MS) has been well-established and theoretically allows for exhaustive assessment of the extractable complexome in biological samples. However, this approach is rather laborious and provides limited complex size resolution and sensitivity. Also, its application has remained restricted to abundant mitochondrial and plastid proteins. Thus, for a majority of proteins, information regarding integration into stable protein complexes is still lacking. Presented here is an optimized approach for complexome profiling comprising preparative-scale BN-PAGE separation, sub-millimeter sampling of broad gel lanes by cryomicrotome slicing, and mass spectrometric analysis with label-free protein quantification. The procedures and tools for critical steps are described in detail. As an application, the report describes complexome analysis of a solubilized endosome-enriched membrane fraction from mouse kidneys, with 2,545 proteins profiled in total. The results demonstrate identification of uniform, low-abundance membrane proteins such as intracellular ion channels as well as high resolution, complex protein assembly patterns, including glycosylation isoforms. The results are in agreement with independent biochemical analyses. In summary, this methodology allows for comprehensive and unbiased identification of protein (super)complexes and their subunit composition, providing a basis for investigating stoichiometry, assembly, and interaction dynamics of protein complexes in any biological system.


Assuntos
Canais de Cálcio/análise , Crioultramicrotomia/métodos , Espectrometria de Massas/métodos , Eletroforese em Gel de Poliacrilamida Nativa/métodos , Animais , Canais de Cálcio/metabolismo , Tomografia com Microscopia Eletrônica/métodos , Proteínas de Membrana/análise , Proteínas de Membrana/metabolismo , Camundongos , Mitocôndrias/química , Mitocôndrias/metabolismo
4.
Neuron ; 74(4): 621-33, 2012 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-22632720

RESUMO

AMPA-type glutamate receptors (AMPARs) are responsible for a variety of processes in the mammalian brain including fast excitatory neurotransmission, postsynaptic plasticity, or synapse development. Here, with comprehensive and quantitative proteomic analyses, we demonstrate that native AMPARs are macromolecular complexes with a large molecular diversity. This diversity results from coassembly of the known AMPAR subunits, pore-forming GluA and three types of auxiliary proteins, with 21 additional constituents, mostly secreted proteins or transmembrane proteins of different classes. Their integration at distinct abundance and stability establishes the heteromultimeric architecture of native AMPAR complexes: a defined core with a variable periphery resulting in an apparent molecular mass between 0.6 and 1 MDa. The additional constituents change the gating properties of AMPARs and provide links to the protein dynamics fundamental for the complex role of AMPARs in formation and operation of glutamatergic synapses.


Assuntos
Neurônios/metabolismo , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Animais , Encéfalo/metabolismo , Camundongos , Conformação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transporte Proteico/genética , Proteômica , Ratos , Receptores de AMPA/genética , Sinapses/genética , Transmissão Sináptica/genética , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA