RESUMO
Concealed deep beneath the oceans is a carbon conveyor belt, propelled by plate tectonics. Our understanding of its modern functioning is underpinned by direct observations, but its variability through time has been poorly quantified. Here we reconstruct oceanic plate carbon reservoirs and track the fate of subducted carbon using thermodynamic modelling. In the Mesozoic era, 250 to 66 million years ago, plate tectonic processes had a pivotal role in driving climate change. Triassic-Jurassic period cooling correlates with a reduction in solid Earth outgassing, whereas Cretaceous period greenhouse conditions can be linked to a doubling in outgassing, driven by high-speed plate tectonics. The associated 'carbon subduction superflux' into the subcontinental mantle may have sparked North American diamond formation. In the Cenozoic era, continental collisions slowed seafloor spreading, reducing tectonically driven outgassing, while deep-sea carbonate sediments emerged as the Earth's largest carbon sink. Subduction and devolatilization of this reservoir beneath volcanic arcs led to a Cenozoic increase in carbon outgassing, surpassing mid-ocean ridges as the dominant source of carbon emissions 20 million years ago. An increase in solid Earth carbon emissions during Cenozoic cooling requires an increase in continental silicate weathering flux to draw down atmospheric carbon dioxide, challenging previous views and providing boundary conditions for future carbon cycle models.
Assuntos
Dióxido de Carbono , Planeta Terra , Ciclo do Carbono , Dióxido de Carbono/análise , Carbonatos/análise , Oceanos e MaresRESUMO
The fossil record of marine invertebrates has long fuelled the debate as to whether or not there are limits to global diversity in the sea1-5. Ecological theory states that, as diversity grows and ecological niches are filled, the strengthening of biological interactions imposes limits on diversity6,7. However, the extent to which biological interactions have constrained the growth of diversity over evolutionary time remains an open question1-5,8-11. Here we present a regional diversification model that reproduces the main Phanerozoic eon trends in the global diversity of marine invertebrates after imposing mass extinctions. We find that the dynamics of global diversity are best described by a diversification model that operates widely within the exponential growth regime of a logistic function. A spatially resolved analysis of the ratio of diversity to carrying capacity reveals that less than 2% of the global flooded continental area throughout the Phanerozoic exhibits diversity levels approaching ecological saturation. We attribute the overall increase in global diversity during the Late Mesozoic and Cenozoic eras to the development of diversity hotspots under prolonged conditions of Earth system stability and maximum continental fragmentation. We call this the 'diversity hotspots hypothesis', which we propose as a non-mutually exclusive alternative to the hypothesis that the Mesozoic marine revolution led this macroevolutionary trend12,13.
Assuntos
Organismos Aquáticos , Biodiversidade , Extinção Biológica , Fósseis , Modelos Biológicos , Oceanos e Mares , Animais , Evolução Biológica , Ecologia , História Antiga , Invertebrados , Modelos LogísticosRESUMO
The fossil record reveals that biotic diversity has fluctuated quasi-cyclically through geological time. However, the causal mechanisms of biotic diversity cycles remain unexplained. Here, we highlight a common, correlatable 36 ± 1 Myr (million years) cycle in the diversity of marine genera as well as in tectonic, sea-level, and macrostratigraphic data over the past 250 Myr of Earth history. The prominence of the 36 ± 1 Myr cycle in tectonic data favors a common-cause mechanism, wherein geological forcing mechanisms drive patterns in both biological diversity and the preserved rock record. In particular, our results suggest that a 36 ± 1 Myr tectono-eustatically driven sea-level cycle may originate from the interaction between the convecting mantle and subducting slabs, thereby pacing mantle-lithospheric deep-water recycling. The 36 ± 1 Myr tectono-eustatic driver of biodiversity is likely related to cyclic continental inundations, with expanding and contracting ecological niches on shelves and in epeiric seas.
Assuntos
Biodiversidade , Fósseis , Oceanos e Mares , Ecossistema , Planeta TerraRESUMO
PURPOSE: Autosomal dominant polycystic kidney disease (ADPKD) is a common hereditary disorder and accounts for 5-10% of all cases of kidney failure. 50% of ADPKD patients reach kidney failure by the age of 58 years requiring dialysis or transplantation. Nephrectomy is performed in up to 20% of patients due to compressive symptoms, renal-related complications or in preparation for kidney transplantation. However, due to the large kidney size in ADPKD, nephrectomy can come with a considerable burden. Here we evaluate our institution's experience of laparoscopic nephrectomy (LN) as an alternative to open nephrectomy (ON) for ADPKD patients. MATERIALS AND METHODS: We report the results of the first 12 consecutive LN for ADPKD from August 2020 to August 2021 in our institution. These results were compared with the 12 most recent performed ON for ADPKD at the same institution (09/2017 to 07/2020). Intra- and postoperative parameters were collected and analyzed. Health related quality of life (HRQoL) was assessed using the SF36 questionnaire. RESULTS: Age, sex, and median preoperative kidney volumes were not significantly different between the two analyzed groups. Intraoperative estimated blood loss was significantly less in the laparoscopic group (33 ml (0-200 ml)) in comparison to the open group (186 ml (0-800 ml)) and postoperative need for blood transfusion was significantly reduced in the laparoscopic group (p = 0.0462). Operative time was significantly longer if LN was performed (158 min (85-227 min)) compared to the open procedure (107 min (56-174 min)) (p = 0.0079). In both groups one postoperative complication Clavien Dindo ≥ 3 occurred with the need of revision surgery. SF36 HRQol questionnaire revealed excellent postoperative quality of life after LN. CONCLUSION: LN in ADPKD patients is a safe and effective operative procedure independent of kidney size with excellent postoperative outcomes and benefits of minimally invasive surgery. Compared with the open procedure patients profit from significantly less need for transfusion with comparable postoperative complication rates. However significant longer operation times need to be taken in account.
Assuntos
Laparoscopia , Rim Policístico Autossômico Dominante , Insuficiência Renal , Humanos , Pessoa de Meia-Idade , Rim Policístico Autossômico Dominante/cirurgia , Qualidade de Vida , Estudos Retrospectivos , Nefrectomia/métodos , Laparoscopia/métodos , Complicações Pós-Operatórias/etiologia , Insuficiência Renal/complicações , Insuficiência Renal/cirurgia , Perda Sanguínea Cirúrgica , RimRESUMO
BACKGROUND: Lack of clinical management of old patients in the emergency department. QUESTION: How can we manage old patients in the emergency department more effectively, medically and economically? METHODS: Evaluation of current selection and screening methods and recommendations for old patients in the emergency department. Acute inpatient treatment needs, presence of dysfunction in at least two core areas and assessment of advance care needs are examined. RESULT: The identification of old patients in the emergency department as geriatric patients alone shows no control potential. Combining the three test criteria of acute inpatient need for treatment, the presence of dysfunction in at least two core areas and the assessment of advance care needs generates four old patient types that have interesting control potential: the medical traumatology patient, the acute geriatric patient, the rehabilitative geriatric patient, and the ambulatory patient. DISCUSSION: in addition to identifying geriatric patients, screening should map acute inpatient treatment needs, assessment of dysfunction, and analysis of advance care needs to define clinically steerable old patients.
Assuntos
Serviço Hospitalar de Emergência , Geriatria , Humanos , Idoso , Avaliação GeriátricaRESUMO
Bone mechanobiology is the study of the physical, biological and mechanical processes that continuously affect the multiscale multicellular system of the bone from the organ to the molecular scale. Current knowledge derives from experimental studies, which are often limited to gathering qualitative data in a cross-sectional manner, up to a restricted number of time points. Moreover, the simultaneous collection of information about 3D bone microarchitecture, cell activity as well as protein distribution and level is still a challenge. In silico models can expand qualitative information with hypothetical quantitative systems, which allow quantification, testing and comparison to existing quantifiable experimental data. An overview of multiscale, multiphysics, agent-based and hybrid techniques and their applications to bone mechanobiology is provided in the present review. The study analysed how mechanical signals, cells and proteins can be modelled in silico to represent bone remodelling and adaptation. Hybrid modelling of bone mechanobiology could combine the methods used in multiscale, multiphysics and agent-based models into a single model, leading to a unified and comprehensive understanding of bone mechanobiology. Numerical simulations of in vivo multicellular systems aided in hypothesis testing of such in silico models. Recently, in silico trials have been used to illustrate the mechanobiology of cells and signalling pathways in clinical biopsies and animal bones, including the effects of drugs on single cells and signalling pathways up to the organ level. This improved understanding may lead to the identification of novel therapies for degenerative diseases such as osteoporosis.
Assuntos
Osso e Ossos , Modelos Biológicos , Animais , Biofísica/métodos , Simulação por Computador , Estudos TransversaisRESUMO
BACKGROUND: In patients with severe polycystic liver disease (PLD), there is a need for new treatments. Estrogens and possibly other female sex hormones stimulate growth in PLD. In some patients, liver volume decreases after menopause. Female sex hormones could therefore be a target for therapy. The AGAINST-PLD study will examine the efficacy of the GnRH agonist leuprorelin, which blocks the production of estrogen and other sex hormones, to reduce liver growth in PLD. METHODS: The AGAINST-PLD study is an investigator-driven, multicenter, randomized controlled trial. Institutional review board (IRB) approval was received at the University Medical Center of Groningen and will be collected in other sites before opening these sites. Thirty-six female, pre-menopausal patients, with a very large liver volume for age (upper 10% of the PLD population) and ongoing liver growth despite current treatment options will be randomized to direct start of leuprorelin or to 18 months standard of care and delayed start of leuprorelin. Leuprorelin is given as 3.75 mg subcutaneously (s.c.) monthly for the first 3 months followed by 3-monthly depots of 11.25 mg s.c. The trial duration is 36 months. MRI scans to measure liver volume will be performed at screening, 6 months, 18 months, 24 months and 36 months. In addition, blood will be drawn, DEXA-scans will be performed and questionnaires will be collected. This design enables comparison between patients on study treatment and standard of care (first 18 months) and within patients before and during treatment (whole trial). Main outcome is annualized liver growth rate compared between standard of care and study treatment. Secondary outcomes are PLD disease severity, change in liver growth within individuals and (serious) adverse events. The study is designed as a prospective open-label study with blinded endpoint assessment (PROBE). DISCUSSION: In this trial, we combined the expertise of hepatologist, nephrologists and gynecologists to study the effect of leuprorelin on liver growth in PLD. In this way, we hope to stop liver growth, reduce symptoms and reduce the need for liver transplantation in severe PLD. Trial registration Eudra CT number 2020-005949-16, registered at 15 Dec 2020. https://www.clinicaltrialsregister.eu/ctr-search/search?query=2020-005949-16 .
Assuntos
Leuprolida , Hepatopatias , Feminino , Humanos , Cistos , Leuprolida/uso terapêutico , Hepatopatias/tratamento farmacológico , Estudos Multicêntricos como Assunto , Estudos Prospectivos , Ensaios Clínicos Controlados Aleatórios como AssuntoRESUMO
Volcanic hotspot tracks featuring linear progressions in the age of volcanism are typical surface expressions of plate tectonic movement on top of narrow plumes of hot material within Earth's mantle. Seismic imaging reveals that these plumes can be of deep origin--probably rooted on thermochemical structures in the lower mantle. Although palaeomagnetic and radiometric age data suggest that mantle flow can advect plume conduits laterally, the flow dynamics underlying the formation of the sharp bend occurring only in the Hawaiian-Emperor hotspot track in the Pacific Ocean remains enigmatic. Here we present palaeogeographically constrained numerical models of thermochemical convection and demonstrate that flow in the deep lower mantle under the north Pacific was anomalously vigorous between 100 million years ago and 50 million years ago as a consequence of long-lasting subduction systems, unlike those in the south Pacific. These models show a sharp bend in the Hawaiian-Emperor hotspot track arising from the interplay of plume tilt and the lateral advection of plume sources. The different trajectories of the Hawaiian and Louisville hotspot tracks arise from asymmetric deformation of thermochemical structures under the Pacific between 100 million years ago and 50 million years ago. This asymmetric deformation waned just before the Hawaiian-Emperor bend developed, owing to flow in the deepest lower mantle associated with slab descent in the north and south Pacific.
RESUMO
Rifted margins are formed by persistent stretching of continental lithosphere until breakup is achieved. It is well known that strain-rate-dependent processes control rift evolution, yet quantified extension histories of Earth's major passive margins have become available only recently. Here we investigate rift kinematics globally by applying a new geotectonic analysis technique to revised global plate reconstructions. We find that rifted margins feature an initial, slow rift phase (less than ten millimetres per year, full rate) and that an abrupt increase of plate divergence introduces a fast rift phase. Plate acceleration takes place before continental rupture and considerable margin area is created during each phase. We reproduce the rapid transition from slow to fast extension using analytical and numerical modelling with constant force boundary conditions. The extension models suggest that the two-phase velocity behaviour is caused by a rift-intrinsic strength--velocity feedback, which can be robustly inferred for diverse lithosphere configurations and rheologies. Our results explain differences between proximal and distal margin areas and demonstrate that abrupt plate acceleration during continental rifting is controlled by the nonlinear decay of the resistive rift strength force. This mechanism provides an explanation for several previously unexplained rapid absolute plate motion changes, offering new insights into the balance of plate driving forces through time.
RESUMO
The theory of plate tectonics describes how the surface of Earth is split into an organized jigsaw of seven large plates of similar sizes and a population of smaller plates whose areas follow a fractal distribution. The reconstruction of global tectonics during the past 200 million years suggests that this layout is probably a long-term feature of Earth, but the forces governing it are unknown. Previous studies, primarily based on the statistical properties of plate distributions, were unable to resolve how the size of the plates is determined by the properties of the lithosphere and the underlying mantle convection. Here we demonstrate that the plate layout of Earth is produced by a dynamic feedback between mantle convection and the strength of the lithosphere. Using three-dimensional spherical models of mantle convection that self-consistently produce the plate sizefrequency distribution observed for Earth, we show that subduction geometry drives the tectonic fragmentation that generates plates. The spacing between the slabs controls the layout of large plates, and the stresses caused by the bending of trenches break plates into smaller fragments. Our results explain why the fast evolution in small back-arc plates reflects the marked changes in plate motions during times of major reorganizations. Our study opens the way to using convection simulations with plate-like behaviour to unravel how global tectonics and mantle convection are dynamically connected.
RESUMO
Application of a kurtosis correction to frequency-weighted sound exposure level (SEL) improved predictions of risk of hearing damage in humans and terrestrial mammals for sound exposures with different degrees of impulsiveness. To assess whether kurtosis corrections may lead to improved predictions for marine mammals, corrections were applied to temporary threshold shift (TTS) growth measurements for harbor porpoises (Phocoena phocoena) exposed to different sounds. Kurtosis-corrected frequency-weighted SEL predicted accurately the growth of low levels of TTS (TTS1-4 < 10 dB) for intermittent sounds with short (1-13 s) silence intervals but was not consistent with frequency-weighted SEL data for continuous sound exposures.
Assuntos
Phocoena , Estimulação Acústica , Animais , Fadiga Auditiva , Limiar Auditivo , Audição , Humanos , Ruído/efeitos adversosRESUMO
The present study aimed at identifying the members of the Anopheles maculipennis complex (Diptera: Culicidae) occurring in Belgium. Therefore, the second internal transcribed spacer of nuclear ribosomal DNA (ITS2) and the mitochondrial cytochrome oxidase subunit I (COI) loci were sequenced in 175 and 111 specimens, respectively, collected between 2007 and 2019. In parallel, the suitability of two species-diagnostic PCR-RFLP assays was tested. The identified specimens included: An. maculipennis s.s. (N = 105), An. daciae (N = 62), An. atroparvus (N = 6) and An. messeae (N = 2). Each species was characterized by unique ITS2 haplotypes, whereas COI only supported the monophyly of An. atroparvus, a historical malaria vector in Belgium. Species identification results were further supported by unique PCR-RFLP banding patterns. We report for the first time An. daciae in Belgium, where it was found to co-occur with An. maculipennis s.s. The latter was the most prevalent in the collection studied (60%) and appears to have the widest distribution in Belgium. As in other studies, An. daciae and An. messeae appeared the most closely related species, up to the point that their species status remains debatable, while their ecological differences, including vector competences, need further study.
Assuntos
Anopheles , Malária , Animais , Anopheles/genética , Bélgica , DNA , DNA Espaçador Ribossômico/genética , Malária/veterinária , Mosquitos VetoresRESUMO
OBJECTIVES: Topical drug administration is commonly applied to control oral inflammation. However, it requires sufficient drug adherence and a high degree of bioavailability. Here, we tested the hypothesis whether an ester-based core-multishell (CMS) nanocarrier is a suitable nontoxic drug-delivery system that penetrates efficiently to oral mucosal tissues, and thereby, increase the bioavailability of topically applied drugs. MATERIAL AND METHODS: To evaluate adhesion and penetration, the fluorescence-labeled CMS 10-E-15-350 nanocarrier was applied to ex vivo porcine masticatory and lining mucosa in a Franz cell diffusion assay and to an in vitro 3D model. In gingival epithelial cells, potential cytotoxicity and proliferative effects of the nanocarrier were determined by MTT and sulphorhodamine B assays, respectively. Transepithelial electrical resistance (TEER) was measured in presence and absence of CMS 10-E-15-350 using an Endohm-12 chamber and a volt-ohm-meter. Cellular nanocarrier uptake was analyzed by laser scanning microscopy. Inflammatory responses were determined by monitoring pro-inflammatory cytokines using real-time PCR and ELISA. RESULTS: CMS nanocarrier adhered to mucosal tissues within 5 min in an in vitro model and in ex vivo porcine tissues. The CMS nanocarrier exhibited no cytotoxic effects and induced no inflammatory responses. Furthermore, the physical barrier expressed by the TEER remained unaffected by the nanocarrier. CONCLUSIONS: CMS 10-E-15-350 adhered to the oral mucosa and adhesion increased over time which is a prerequisite for an efficient drug release. Since TEER is unaffected, CMS nanocarrier may enter the oral mucosa transcellularly. CLINICAL RELEVANCE: Nanocarrier technology is a novel and innovative approach for efficient topical drug delivery at the oral mucosa.
Assuntos
Nanopartículas , Absorção Cutânea , Administração Cutânea , Animais , Portadores de Fármacos/metabolismo , Ésteres/metabolismo , Mucosa Bucal , Pele , SuínosRESUMO
Resting state fMRI (rsfMRI) is frequently used to study brain function, including in clinical populations. Similarity of blood-oxygen-level-dependent (BOLD) fluctuations during rsfMRI between brain regions is thought to reflect intrinsic functional connectivity (FC), potentially due to history of coactivation. To quantify similarity, studies have almost exclusively relied on Pearson correlation, which assumes linearity and can therefore underestimate FC if the hemodynamic response function differs regionally or there is BOLD signal lag between timeseries. Here we show in three cohorts of children, adolescents and adults, with and without autism spectrum disorders (ASDs), that measuring the similarity of BOLD signal fluctuations using non-linear dynamic time warping (DTW) is more robust to global signal regression (GSR), has higher test-retest reliability and is more sensitive to task-related changes in FC. Additionally, when comparing FC between individuals with ASDs and typical controls, more group differences are detected using DTW. DTW estimates are also more related to ASD symptom severity and executive function, while Pearson correlation estimates of FC are more strongly associated with respiration during rsfMRI. Together these findings suggest that non-linear methods such as DTW improve estimation of resting state FC, particularly when studying clinical populations whose hemodynamics or neurovascular coupling may be altered compared to typical controls.
Assuntos
Transtorno do Espectro Autista/fisiopatologia , Mapeamento Encefálico/métodos , Encéfalo/fisiopatologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Adolescente , Adulto , Transtorno do Espectro Autista/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Criança , Interpretação Estatística de Dados , Feminino , Humanos , Masculino , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia , Dinâmica não Linear , Adulto JovemRESUMO
Shot range, the muzzle-target distance, is a crucial parameter for forensic reconstruction of deaths by firearms. In a large number of cases, especially suicides, the forensic pathologist is confronted with contact or near-contact shots, where muzzle gases play an additional role. This study was conducted to systematically investigate the influence of muzzle gases on the temporary cavity (TC). A total of 72 shots were fired using full metal-jacketed bullets in four forensically relevant calibres from 10-, 5-, 3-, 2- and 1-cm distance and in close contact. Target model was the so-called reference cube (10% gelatine at 4 °C) with 12-cm edge length. The TC was recorded using high-speed video (HSV). Cross-sectional analysis was performed by cutting the blocks to 1-cm slices, which were evaluated by applying the polygon method. The TC of shots from 10 and 5 cm distance had a tubular form. This aspect changed depending on the cartridge with decreasing distance (≤ 3 cm) into a pear-like form, which was typical for contact shots. The cumulated heights of the TC increased with decreasing distance below 3 cm. Contact shots approximately doubled the extension of the TC compared with exclusive energy transfer. Whereas HSV documented an increasingly asymmetric profile with ballooning at the entry side, cross-sectional analysis of cracks in gelatine resulted in convex graphs with only slight asymmetry for contact shots. Additional damage in gelatine was detected for 3-cm distance or less in calibre .357 Magnum and ≤ 2 cm for .32 auto, .38 special and 9mm Luger. The increasing influence of muzzle gas pressure is detectable with decreasing shot range below 3 cm.
Assuntos
Armas de Fogo , Balística Forense , Gases/efeitos adversos , Pressão/efeitos adversos , Ferimentos por Arma de Fogo/patologia , Transferência de Energia , Gelatina , Humanos , Modelos BiológicosRESUMO
A facile one-pot gram-scale synthesis of tetraalkylammonium tetrafluoridochlorate(III) [cat][ClF4 ] ([cat]=[NEt3 Me]+ , [NEt4 ]+ ) is described. An acetonitrile solution of the corresponding alkylammonium chloride salt is fluorinated with diluted fluorine at low temperatures. The reaction proceeds via the [ClF2 ]- anion which is structurally characterized for the first time. The potential application of [ClF4 ]- salts as fluorinating agents is evaluated by the reaction with diphenyl disulfide, Ph2 S2 , to pentafluorosulfanyl benzene, PhSF5 . The CN moieties in acetonitrile and [B(CN)4 ]- are transferred in CF3 groups. Exposure of carbon monoxide, CO, leads to the formation of carbonyl fluoride, COF2 , and elemental gold is dissolved under the formation of tetrafluoridoaurate [AuF4 ]- .
RESUMO
Dietary intake of methyl donors, such as folic acid and methionine, shows considerable intra-individual variation in human populations. While it is recognized that maternal departures from the optimum of dietary methyl donor intake can increase the risk for mental health issues and neurological disorders in offspring, it has not been explored whether paternal dietary methyl donor intake influences behavioral and cognitive functions in the next generation. Here, we report that elevated paternal dietary methyl donor intake in a mouse model, transiently applied prior to mating, resulted in offspring animals (methyl donor-rich diet (MD) F1 mice) with deficits in hippocampus-dependent learning and memory, impaired hippocampal synaptic plasticity and reduced hippocampal theta oscillations. Gene expression analyses revealed altered expression of the methionine adenosyltransferase Mat2a and BK channel subunit Kcnmb2, which was associated with changes in Kcnmb2 promoter methylation in MD F1 mice. Hippocampal overexpression of Kcnmb2 in MD F1 mice ameliorated altered spatial learning and memory, supporting a role of this BK channel subunit in the MD F1 behavioral phenotype. Behavioral and gene expression changes did not extend into the F2 offspring generation. Together, our data indicate that paternal dietary factors influence cognitive and neural functions in the offspring generation.
Assuntos
Cognição/fisiologia , Suplementos Nutricionais/efeitos adversos , Herança Paterna/fisiologia , Animais , Metilação de DNA , Dieta , Epigênese Genética , Pai , Ácido Fólico/metabolismo , Hipocampo/metabolismo , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta , Aprendizagem/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Metionina/metabolismo , Metionina Adenosiltransferase , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Herança Paterna/genética , Regiões Promotoras GenéticasRESUMO
BACKGROUND: Human skin protects the body from external damage, pathogens and oxidative stress factors such as ultraviolet (UV) radiation. Excessive exposure to UV radiation can lead to increased production of free radicals and hence to skin damage such as inflammation, premature skin ageing and skin cancer. Besides UV, the visible and near infrared (NIR) regions are also a source of radical production. Half of all free radicals are induced by the visible + NIR region of the solar spectrum in people with skin types I-III, but data on the effects in people with skin types IV-VI are missing. OBJECTIVES: This in vivo pilot study addressed the distribution of radical production in skin types IV and V during irradiation in the UV, visible and NIR spectral regions, comparing the first results with those of skin type II. METHODS: The measurements were performed in vivo using L-band electron paramagnetic resonance spectroscopy and the spin probe PCA. RESULTS: In skin types IV-V most radicals were induced in the visible + NIR region, followed by the NIR and UV regions of the sun spectrum. Significantly (P ≤ 0·05) more radicals were induced in skin types IV-V than in type II during NIR irradiation, whereas skin types IV-V exhibited significantly less UV-induced radicals (P ≤ 0·01) than skin type II. CONCLUSIONS: All spectral regions (UV, visible and NIR) cause free radical formation in skin types II and IV-V. After 4 min of solar-simulated exposure (UV-NIR), the radical formation in skin types IV-V is 60% of that in skin type II. Therefore people with darker skin types also need solar protection.
Assuntos
Radicais Livres/metabolismo , Estresse Oxidativo/efeitos da radiação , Pigmentação da Pele/fisiologia , Luz Solar/efeitos adversos , Raios Ultravioleta/efeitos adversos , Adulto , Feminino , Voluntários Saudáveis , Humanos , Masculino , Melaninas/análise , Projetos Piloto , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/efeitos da radiação , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/fisiologia , Envelhecimento da Pele/efeitos da radiação , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/prevenção & controle , Protetores Solares/administração & dosagemRESUMO
Owing to the great potential of iron oxide nanoparticles (NPs) for nanomedicine, large efforts have been made to better control their magnetic properties, especially their magnetic anisotropy to provide NPs able to combine imaging by MRI and therapy by magnetic hyperthermia. In that context, the design of anisotropic NPs appears as a very promising and efficient strategy. Furthermore, their bioactive coating also remains a challenge as it should provide colloidal stability, biocompatibility, furtivity along with good water diffusion for MRI. By taking advantage of our controlled synthesis method of iron oxide NPs with different shapes (cubic, spherical, octopod and nanoplate), we demonstrate here that the dendron coating, shown previously to be very suitable for 10 nm sized iron oxide, also provided very good colloidal, MRI and antifouling properties to the anisotropic shaped NPs. These antifouling properties, demonstrated through several experiments and characterizations, are very promising to achieve specific targeting of disease tissues without affecting healthy organs. On the other hand, the magnetic hyperthermia properties were shown to depend on the saturation magnetization and the ability of NPs to self-align, confirming the need of a balance between crystalline and dipolar magnetic anisotropies.
RESUMO
This study aimed to evaluate the frequency of Neospora caninum antibodies in rodents from the Island of Fernando de Noronha, Brazil, and to contribute to epidemiological data on neosporosis in this region. Blood samples were collected from 154 black-rats (Rattus rattus) and 12 rock-cavies (Kerodon rupestris). The search for anti-N. caninum antibodies was made using the NAT technique, with a cut-off of 1:20. The frequency of positive mice was 5.19% (8/154 - 1:20 titer) and all rock-cavies were negative. The low frequency of antibodies against N. caninum in rodents found in the Island shows the low contamination of the environment where these animals live.