RESUMO
Numerous plant species are expanding their native ranges due to anthropogenic environmental change. Because cytotypes of polyploid complexes often show similar morphologies, there may be unnoticed range expansions (i.e. cryptic invasions) of one cytotype into regions where only the other cytotype is native. We critically revised herbarium specimens of diploid and tetraploid Centaurea stoebe, collected across Europe between 1790 and 2023. Based on their distribution in natural and relict habitats and phylogeographic data, we estimated the native ranges of both cytotypes. Diploids are native across their entire European range, whereas tetraploids are native only to South-Eastern Europe and have recently expanded their range toward Central Europe. The proportion of tetraploids has exponentially increased over time in their expanded but not in their native range. This cryptic invasion predominantly occurred in ruderal habitats and enlarged the climatic niche of tetraploids toward a more oceanic climate. We conclude that spatio-temporally explicit assessments of range shifts, habitat preferences and niche evolution can improve our understanding of cryptic invasions. We also emphasize the value of herbarium specimens for accurate estimation of species´ native ranges, with fundamental implications for the design of research studies and the assessment of biodiversity trends.
RESUMO
Exploring the fitness consequences of whole-genome multiplication (WGM) is essential for understanding the establishment of autopolyploids in diploid parental populations, but suitable model systems are rare. We examined the impact of WGM on reproductive traits in three major cytotypes (2x, 3x, 4x) of Pilosella rhodopea, a species with recurrent formation of neo-autopolyploids in mixed-ploidy populations. We found that diploids had normal female sporogenesis and gametogenesis, high fertility, and produced predominantly euploid seed progeny. By contrast, autopolyploids had highly disturbed developmental programs that resulted in significantly lower seed set and a high frequency of aneuploid progeny. All cytotypes, but particularly triploids, produced gametes of varying ploidy, including unreduced ones, that participated in frequent intercytotype mating. Noteworthy, the reduced investment in sexual reproduction in autopolyploids was compensated by increased production of axillary rosettes and the novel expression of two clonal traits: adventitious rosettes on roots (root-sprouting), and aposporous initial cells in ovules which, however, do not result in functional apomixis. The combination of increased vegetative clonal growth in autopolyploids and frequent intercytotype mating are key mechanisms involved in the formation and maintenance of the largest diploid-autopolyploid primary contact zone ever recorded in angiosperms.
Assuntos
Fertilidade , Ploidias , Diploide , Reprodução , Sementes , PoliploidiaRESUMO
Climate change may affect plant-herbivore interactions and their associated ecosystem functions. In an experimental evolution approach, we subjected replicated populations of the invasive Ambrosia artemisiifolia to a combination of simulated warming and herbivory by a potential biocontrol beetle. We tracked genomic and metabolomic changes across generations in field populations and assessed plant offspring phenotypes in a common environment. Using an integrated Bayesian model, we show that increased offspring biomass in response to warming arose through changes in the genetic composition of populations. In contrast, increased resistance to herbivory arose through a shift in plant metabolomic profiles without genetic changes, most likely by transgenerational induction of defences. Importantly, while increased resistance was costly at ambient temperatures, warming removed this constraint and favoured both vigorous and better defended plants under biocontrol. Climate warming may thus decrease biocontrol efficiency and promote Ambrosia invasion, with potentially serious economic and health consequences.
Assuntos
Ambrosia , Ecossistema , Teorema de Bayes , Mudança Climática , Herbivoria/fisiologia , PlantasRESUMO
Functional traits are frequently proposed to determine the invasiveness of alien species. However, few empirical studies have directly manipulated functional traits and tested their importance in the invasion success of alien species into native plant communities, particularly under global change. We manipulated clonal integration (a key clonal functional trait) of four alien clonal plants by severing inter-ramet connections or keeping them intact and simulated their invasion into native plant communities with two levels of species diversity, population density and nutrient availability. High community diversity and density impeded the invasion success of the alien clonal plants. Clonal integration of the alien plants promoted their invasion success, particularly in the low-density communities associated with low species diversity or nutrient addition, which resulted in a negative correlation between the performance of alien plants and native communities, as expected under global change. Thus, clonal integration can favor the invasion success of alien clonal plants into degraded resident communities with a high degree of disturbance and eutrophication. Our findings confirm the role of clonal functional traits in facilitating alien plant invasions into native plant communities and suggest that clonal functional traits should be considered to efficiently restore degraded communities heavily invaded by alien clonal plants.
RESUMO
Predicting plant distributions under climate change is constrained by our limited understanding of potential rapid adaptive evolution. In an experimental evolution study with the invasive common ragweed (Ambrosia artemisiifolia L.) we subjected replicated populations of the same initial genetic composition to simulated climate warming. Pooled DNA sequencing of parental and offspring populations showed that warming populations experienced greater genetic divergence from their parents, than control populations. In a common environment, offspring from warming populations showed more convergent phenotypes in seven out of nine plant traits, with later flowering and larger biomass, than plants from control populations. For both traits, we also found a significantly higher ratio of phenotypic to genetic differentiation across generations for warming than for control populations, indicating stronger response to selection under warming conditions. As a measure for evolutionary rate, the phenotypic and sequence divergence between generations were assessed using the Haldane metric. Our approach combining comparisons between generations (allochronic) and between treatments (synchronic) in an experimental evolutionary field study, and linking population genomic data with phenotyping analyses provided a powerful test to detect rapid responses to selection. Our findings demonstrate that ragweed populations can rapidly evolve in response to climate change within a single generation. Short-term evolutionary responses to climate change may aggravate the impact of some plant invaders in the future and should be considered when making predictions about future distributions and impacts of plant invaders.
Assuntos
Ambrosia , Mudança Climática , Genômica , Fenótipo , PlantasRESUMO
Species distribution models can predict the suitable climatic range of a potential biological control agent (BCA), but they provide little information on the BCA's potential impact. To predict high population buildup, a prerequisite of biocontrol impact, studies are needed that assess the effect of environmental factors on vital rates of a BCA across the environmental gradient of the BCA's suitable habitats, especially for the region where the BCA is considered for field release. We extended a published species distribution model with climate-dependent vital rates of Ophraella communa, a recently and accidentally introduced potential BCA of common ragweed, Ambrosia artemisiifolia in Europe. In field and laboratory experiments, we collected data on climate-dependent parameters assumed to be the most relevant for the population buildup of O. communa, i.e., temperature driving the number of generations per year and relative humidity (RH) determining egg hatching success. We found that O. communa concluded one generation in 334 cumulative degree days, and that egg hatching success strongly decreased from > 80% to < 20% when RH drops from 55% to 45% during the day. We used these values to spatially explicitly project population densities across the European range suitable for both A. artemisiifolia and the beetle and found that the present distribution of the beetle in Europe is within the range with the highest projected population growth. The highest population density of O. communa was predicted for northern Italy and parts of western Russia and western Georgia. Field observations of high impact on A. artemisiifolia with records of 80% aerial pollen reduction in the Milano area since the establishment of O. communa are in line with these predictions. The relative importance of temperature and RH on the population density of O. communa varies considerably across its suitable range in Europe. We propose that the combined statistical and mechanistic approach outlined in this paper helps to more accurately predict the potential impact of a weed BCA than a species distribution model alone. Identifying the factors limiting the population buildup of a BCA across the suitable range allows implementation of more targeted release and management strategies to optimize biocontrol efficacy.
Assuntos
Ambrosia , Animais , Europa (Continente) , Georgia , Itália , Federação RussaRESUMO
PREMISE OF THE STUDY: Genome duplication is associated with multiple changes at different levels, including interactions with pollinators and herbivores. Yet little is known whether polyploidy may also shape belowground interactions. METHODS: To elucidate potential ploidy-specific interactions with arbuscular mycorrhizal fungi (AMF), we compared mycorrhizal colonization and assembly of AMF communities in roots of diploid and tetraploid Centaurea stoebe s.l. (Asteraceae) co-occurring in a Central European population. In a follow-up greenhouse experiment, we tested inter-cytotype differences in mycorrhizal growth response by combining ploidy, substrate, and inoculation with native AMF in a full-factorial design. KEY RESULTS: All sampled plants were highly colonized by AMF, with the Glomeraceae predominating. AMF-community composition revealed by 454-pyrosequencing reflected the spatial distribution of the hosts, but not their ploidy level or soil characteristics. In the greenhouse experiment, the tetraploids produced more shoot biomass than the diploids did when grown in a more fertile substrate, while no inter-cytotype differences were found in a less fertile substrate. AMF inoculation significantly reduced plant growth and improved P uptake, but its effects did not differ between the cytotypes. CONCLUSIONS: The results do not support our hypotheses that the cytotype structure in a mixed-ploidy population of C. stoebe is mirrored in AMF-community composition and that ploidy-specific fungal communities contribute to cytotype co-existence. Causes and implications of the observed negative growth response to AMF are discussed.
Assuntos
Centaurea/genética , Centaurea/microbiologia , Micorrizas/crescimento & desenvolvimento , Diploide , Fertilizantes , TetraploidiaRESUMO
What confers invasive alien plants a competitive advantage over native plants remains open to debate. Many of the world's worst invasive alien plants are clonal and able to share resources within clones (clonal integration), particularly in heterogeneous environments. Here, we tested the hypothesis that clonal integration benefits invasive clonal plants more than natives and thus confers invasives a competitive advantage. We selected five congeneric and naturally co-occurring pairs of invasive alien and native clonal plants in China, and grew pairs of connected and disconnected ramets under heterogeneous light, soil nutrient and water conditions that are commonly encountered by alien plants during their invasion into new areas. Clonal integration increased biomass of all plants in all three heterogeneous resource environments. However, invasive plants benefited more from clonal integration than natives. Consequently, invasive plants produced more biomass than natives. Our results indicate that clonal integration may confer invasive alien clonal plants a competitive advantage over natives. Therefore, differences in the ability of clonal integration could potentially explain, at least partly, the invasion success of alien clonal plants in areas where resources are heterogeneously distributed.
Assuntos
Espécies Introduzidas , Magnoliopsida/fisiologia , Reprodução AssexuadaRESUMO
At local scales, it has often been found that invasibility decreases with increasing resident plant diversity. However, whether resident community diversity similarly resists invasion by alien versus native species is seldom studied. We examined this issue by invading constructed native plant assemblages that varied in species and functional richness with invasive alien or native Asteraceae species. Assemblages were also invaded with spotted knapweed, Centaurea stoebe, a native European aster that has been previously used in diversity-invasibility experiments in North America. We also conducted a field survey to explore the generality of the patterns generated from our experimental study. Both experimental and observational work revealed that increasing diversity reduced the performance of alien but not native invaders. Centaurea stoebe invading its native community performed poorly regardless of resident diversity, whereas in a parallel, previously published study conducted in North America, C. stoebe easily invaded low-diversity but not high-diversity assemblages. Our results suggest that diversity is an attribute of resident communities that makes them more or less susceptible to invasion by novel invasive alien but not native plant species.
Assuntos
Asteraceae/fisiologia , Espécies Introduzidas , Biodiversidade , Centaurea/fisiologia , EcossistemaRESUMO
PREMISE OF THE STUDY: Biotic resistance is often studied in the context of how interactions between native biota and invading species influence the success of those invaders. Seldom, however, is the strength of "resistance" compared biogeographically, where the ability of a species to impede invader establishment is contrasted between an invader's native and introduced recipient community. METHODS: We conducted an experiment to examine how community diversity influences seedling recruitment of a plant invader where it is native and contrasted with results previously published from introduced ranges. In Switzerland, we created recipient communities that varied in species and functional richness and invaded them, or not, with seeds of Centaurea stoebe, a native European plant that has been previously used in an identical experiment in North America, where it is a prominent invader. KEY RESULTS: The biogeographic comparison revealed that the recipient community largely prevented C. stoebe seedling establishment at home (Switzerland), but not away (Montana, USA), and that diversity of the resident vegetation did not contribute to the effects observed in the introduced range. CONCLUSIONS: Our results provide evidence that differences in the biogeographic conditions and/or overall level of competition of resident community between the native and introduced range considerably suppresses seedling recruitment of the invasive plant, rather than resident diversity itself. In the case of C. stoebe, the surprisingly low establishment success in the experiments conducted in the native compared with the introduced range is likely to be influenced by the higher level of competition with resident community, by abiotic environmental conditions or interactions between these two factors in the native range. Release from factors suppressing seedling recruitment at home may contribute to the successful invasion of C. stoebe in North America.
Assuntos
Biota , Centaurea/fisiologia , Espécies Introduzidas , Dispersão Vegetal , Centaurea/crescimento & desenvolvimento , Montana , Dinâmica Populacional , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , SuíçaRESUMO
BACKGROUND AND AIMS: Spotted knapweed (Centaurea stoebe s.l., Asteraceae) is native to Europe, where it occurs as a diploid (2xEU) and tetraploid cytotype (4xEU), but so far only the tetraploid has been reported in the introduced range in North America (4xNA). In previous studies, significant range shifts have been found towards drier climates in 4xEU compared with 2xEU, and in 4xNA when compared with the native range. In addition, 4x plants showed thicker leaves and reduced specific leaf area compared with 2x plants, suggesting higher drought tolerance in 4x plants. It is thus hypothesized that the 4x cytotype might be better pre-adapted to drought than the 2x, and the 4xNA better adapted than the 4xEU due to post-introduction selection. METHODS: Plants of the three geocytotypes (2xEU, 4xEU and 4xNA ), each represented by six populations, were subjected to three water treatments over 6 weeks in a greenhouse experiment. Plasticity and reaction norms of above- and below-ground biomasses and their ratio, survival rate, stomatal conductance and carbon isotope discrimination were analysed using linear and generalized linear mixed effect models. KEY RESULTS AND CONCLUSIONS: Above-ground and total biomasses of European tetraploids were slightly less affected by drought than those of European diploids, and 4xEU plants maintained higher levels of stomatal conductance under moderate drought than 4xNA plants, thus supporting the pre-adaptation but not the post-introduction evolution hypothesis. Plasticity indexes for most of the traits were generally higher in 2xEU and 4xNA than in 4xEU plants, but these differences were not or were only marginally significant. Interestingly, the effect of population origin and its interaction with treatment was more important than the effects of geocytotype and range. Population means for the control treatment showed several significant associations either with latitude or some aspect of climatic data, suggesting evolution of local adaptations, especially within the 2xEU and 4xEU geocytotypes.
Assuntos
Adaptação Fisiológica , Centaurea/fisiologia , Secas , Espécies Introduzidas , Biomassa , Clima , Geografia , Modelos Lineares , Dinâmica Populacional , Análise de Regressão , ÁguaRESUMO
Accidental introductions of biological weed control (BWC) agents (i) offer opportunities to assess host use of agents with a potentially broader fundamental host-range than those approved for field release directly in target areas; (ii) urge national authorities to rapidly respond as they may threaten native species or crops, and by this (iii) help advancing post-release studies, a neglected aspect of BWC. Through detailed insights gained from studying the recent accidental introduction of the ragweed leaf beetle Ophraella communa into Europe, we derive suggestions for overcoming barriers to adoption of BWC by re-evaluating the predictive power of pre-release studies and, thus, the presently strict criteria for deciding upon their release that might exclude safe and efficient agents. By using the allergenic weed Ambrosia artemisiifolia and the accidentally introduced BWC agent O. communa as study system, we also hope to raise the awareness of authorities to consider biological control more prominently as a key approach for pest management in the 'One Health' concept, which aims to sustainably balance and optimize the health of people, animals, plants and ecosystems. © 2023 Society of Chemical Industry.
Assuntos
Agentes de Controle Biológico , Besouros , Humanos , Animais , Ecossistema , Europa (Continente) , Ambrosia , Produtos AgrícolasRESUMO
Water availability strongly influences the survival, growth, and reproduction of most terrestrial plant species. Experimental evidence has well documented the effect of changes in total amount of water availability on non-native vs. native plants. However, little is known about how fluctuations in water availability affect these two groups, although more extreme fluctuations in water availability increasingly occur with prolonged drought and extreme precipitation events. Here, we grew seven non-native and seven native plant species individually in the greenhouse. Then, we exposed them to four watering treatments, each treatment with the same total amount of water, but with different divisions: W1 (added water 16 times with 125 mL per time), W2 (8 times, 250 mL per time), W3 (4 times, 500 mL per time), and W4 (2 times, 1000 mL per time). We found that both non-native and native plants produced the most biomass under medium frequency/magnitude watering treatments (W2 and W3). Interestingly, non-native plants produced 34% more biomass with the infrequent, substantial watering treatment (W4) than with frequent, minor watering treatment (W1), whereas native plants showed opposite patterns, producing 26% more biomass with W1 than with W4. Differences in the ratio of root to shoot under few/large and many/small watering treatments of non-native vs. native species probably contributed to their different responses in biomass production. Our results advance the current understanding of the effect of water availability on non-native plants, which are affected not only by changes in amount of water availability but also by fluctuations in water availability. Furthermore, our results indicate that an increased few/large precipitation pattern expected under climate change conditions might further promote non-native plant invasions. Future field experiments with multiple phylogenetically controlled pairs of non-native and native species will be required to enhance our understanding of how water availability fluctuations impact on non-native invasions.
RESUMO
Exotic plant invaders can promote others via direct or indirect facilitation, known as "invasional meltdown." Increased soil nutrients can also promote invaders by increasing their competitive impacts, but how this might affect meltdown is unknown. In a mesocosm experiment, we evaluated how eight exotic plant species and eight Eurasian native species responded individually to increasing densities of the invasive plant Conyza canadensis, while varying the supply and fluctuations of nutrients. We found that increasing density of C. canadensis intensified competitive suppression of natives but intensified facilitation of other exotics. Higher and fluctuating nutrients exacerbated the competitive effects on natives and facilitative effects on exotics. Overall, these results show a pronounced advantage of exotics over native target species with increased relative density of C. canadensis under high nutrient availability and fluctuation. We integrate these results with the observation that exotic species commonly drive increases in soil resources to suggest the Resource-driven Invasional Meltdown and Inhibition of Natives hypothesis in which biotic acceleration of resource availability promotes other exotic species over native species, leading to invasional meltdown.
Assuntos
Espécies Introduzidas , Solo , EcossistemaRESUMO
The evolution of optimal life history strategies is central for the fitness of organisms in a given environment. Besides divergent selection, other factors may determine regional patterns of differentiation and contribute to life history evolution. In a common-garden environment over three years, we examined life history differentiation across different eco-geographical regions and effects of a specialist root-insect herbivore in the widespread European plant Centaurea stoebe, spotted knapweed. This plant occurs as two cytotypes with contrasting life cycles: monocarpic diploids and polycarpic tetraploids. In addition, the tetraploid cytotype has more recently become invasive in North America. We found significant regional differentiation in traits related to the timing of reproduction and reproductive allocation, but contrasting patterns in diploids and tetraploids. In diploids the degree of regional differentiation was higher compared to native tetraploids, and in the latter compared to invasive tetraploids. Furthermore, a pronounced shift in environmental conditions between the native and introduced range could have contributed to the differentiation between native and invasive tetraploids. The study also revealed the potential of the root-mining insect herbivore Agapeta zoegana, used as a biological control organism, to increase plant performance (presumably through overcompensatory growth), especially in the polycarpic tetraploids, and more so in the introduced populations. These findings suggest that patterns of regional differentiation in C. stoebe may be partly determined by divergent selection, but also strongly modulated by life cycle differences among geo-cytotypes. Furthermore, our study highlights the importance in applying a comprehensive and long-term approach when studying regional differentiation in plants.
Assuntos
Evolução Biológica , Centaurea/classificação , Animais , Centaurea/genética , Demografia , Herbivoria , Mariposas , América do Norte , Raízes de Plantas/parasitologia , PloidiasRESUMO
Knowledge from basic plant ecology suggests that impact of one plant species on another is driven by either competition for the same limiting resources, or by unique plant traits. These processes might be context specific, explaining a differential impact of exotic plant invaders in the native vs. introduced range. With the help of a conceptual framework, we aimed at identifying the relationship between invader biomass and impact in the invasive Centaurea stoebe by conducting pairwise competition experiments with 15 European (old) and 15 North American (new) neighboring species. Old neighbors grew larger and could use available soil moisture more efficiently for growth than new neighbors. Interestingly, biomass of C. stoebe explained a substantial amount of the variation in biomass of the coevolved neighbors, but not of the new "naive" neighbors. Thus, impact in the home range appears to be driven by competition for the same limiting resources, but by other factors in the introduced range, possibly by exploitation of resources that are not used by the new neighbors or by interference competition. This distinction has important consequences for the management of invasive species, as in our study ecosystem recovery is less likely after simple biomass reduction.
Assuntos
Biomassa , Centaurea/fisiologia , Ecossistema , Espécies Introduzidas , Demografia , Europa (Continente) , América do Norte , Solo/química , Especificidade da Espécie , Água/químicaRESUMO
PREMISE OF THE STUDY: Because seeds have essential functions in the life cycle of plants, even subtle changes in their characteristics may have important demographic consequences. In this study, we examined whether potential changes in seed characteristics as a result of polyploidy or postintroduction evolution may have contributed to the invasion of Centaurea stoebe (Asteraceae). This plant occurs as diploid and tetraploid cytotypes in its native range in Europe, whereas only tetraploids have been found and become invasive in North America. Specific comparisons among these three "geo-cytotypes" allow us to explore hypotheses of preadaptation resulting from polyploidy (European diploids vs. European tetraploids) and postintroduction evolution (European tetraploids vs. North American tetraploids). METHODS: Using seeds collected from plants of each geo-cytotype grown in a common maternal environment, we compared seed mass, morphology (achene and pappus size), dispersal potential (falling velocity, seed roughness), survival, germination, and seedling emergence in a combination of laboratory, greenhouse and field experiments. KEY RESULTS: We found increased seed mass in North American tetraploids compared with European tetraploids. Seed morphology and dispersal potential were largely similar in all geo-cytotypes. Seed survival under field conditions was higher in native and invasive tetraploids compared with diploids. Germination in the laboratory was similar among all geo-cytotypes, but seedling emergence under field conditions was higher in invasive tetraploids than in the other geo-cytotypes. CONCLUSIONS: Our findings suggest that a combination of preadaptation due to polyploidy (increased seed survival) and further postintroduction evolution in North American tetraploids (increased seed mass and seedling emergence) may have contributed to their invasion.
Assuntos
Centaurea/genética , Sementes/genética , Biomassa , Centaurea/anatomia & histologia , Centaurea/fisiologia , Diploide , Europa (Continente) , Deriva Genética , Germinação , Espécies Introduzidas , América do Norte , Plântula/anatomia & histologia , Plântula/genética , Plântula/fisiologia , Sementes/anatomia & histologia , Sementes/fisiologia , TetraploidiaRESUMO
Soil nutrient availability and colonization by arbuscular mycorrhizal fungi are important and potentially interacting factors shaping vegetation composition and succession. We investigated the effect of carbon (C) addition, aimed at reducing soil nutrient availability, on arbuscular mycorrhizal colonization. Seedlings of 27 plant species with different sets of life-history traits (functional group affiliation, life history strategy and nitrophilic status) were grown in pots filled with soil from a nutrient-rich set-aside field and amended with different amounts of C. Mycorrhizal colonization was progressively reduced along the gradient of increasing C addition in 17 out of 27 species, but not in the remaining species. Grasses had lower colonization levels than forbs and legumes and the decline in AM fungal colonization was more pronounced in legumes than in other forbs and grasses. Mycorrhizal colonization did not differ between annual and perennial species, but decreased more rapidly along the gradient of increasing C addition in plants with high Ellenberg N values than in plants with low Ellenberg N values. Soil C addition not only limits plant growth through a reduction in available nutrients, but also reduces mycorrhizal colonization of plant roots. The effect of C addition on mycorrhizal colonization varies among plant functional groups, with legumes experiencing an overproportional reduction in AM fungal colonization along the gradient of increasing C addition. We therefore propose that for a better understanding of vegetation succession on set-aside fields one may consider the interrelationship between plant growth, soil nutrient availability and mycorrhizal colonization of plant roots.
Assuntos
Carbono/farmacologia , Fabaceae/efeitos dos fármacos , Magnoliopsida/efeitos dos fármacos , Micorrizas/efeitos dos fármacos , Poaceae/efeitos dos fármacos , Microbiologia do Solo , Fabaceae/crescimento & desenvolvimento , Fabaceae/microbiologia , Magnoliopsida/crescimento & desenvolvimento , Magnoliopsida/microbiologia , Micorrizas/crescimento & desenvolvimento , Micorrizas/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/microbiologia , Poaceae/crescimento & desenvolvimento , Poaceae/microbiologia , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Solo , Especificidade da Espécie , SimbioseRESUMO
Outcomes of weed biological control projects are highly variable, but a mechanistic understanding of how top-down and bottom-up factors influence the success of weed biological control is often lacking. We grew Rumex obtusifolius, the most prominent native weed in European grasslands, in the presence and absence of competition from the grass Lolium perenne and subjected it to herbivory through targeted inoculation with root-boring Pyropteron spp. To explore whether the interactive effects of competition and inundative biological control were size-dependent, R. obtusifolius was planted covering a large range of plant sizes found in managed grasslands. Overall, competition from the grass sward reduced aboveground biomass and final root mass of R. obtusifolius about 62- and 7.5-fold, respectively, and increased root decay of R. obtusifolius from 14 to 58%. Herbivory alone increased only root decay. However, grass competition significantly enhanced infestation by Pyropteron spp. and, as a consequence, enhanced the impact of herbivory on aboveground biomass and final root mass. The synergistic effect was so strong that R. obtusifolius plants grown from initially smaller roots did no longer develop. Inoculating R. obtusifolius with Pyropteron species in grasslands should be further pursued as a promising inundative biological control strategy in the weed's native range.
Assuntos
Lolium , Rumex , Animais , Poaceae , Herbivoria , Insetos , PlantasRESUMO
Ongoing and future climate change driven expansion of aeroallergen-producing plant species comprise a major human health problem across Europe and elsewhere. There is an urgent need to produce accurate, temporally dynamic maps at the continental level, especially in the context of climate uncertainty. This study aimed to restore missing daily ragweed pollen data sets for Europe, to produce phenological maps of ragweed pollen, resulting in the most complete and detailed high-resolution ragweed pollen concentration maps to date. To achieve this, we have developed two statistical procedures, a Gaussian method (GM) and deep learning (DL) for restoring missing daily ragweed pollen data sets, based on the plant's reproductive and growth (phenological, pollen production and frost-related) characteristics. DL model performances were consistently better for estimating seasonal pollen integrals than those of the GM approach. These are the first published modelled maps using altitude correction and flowering phenology to recover missing pollen information. We created a web page (http://euragweedpollen.gmf.u-szeged.hu/), including daily ragweed pollen concentration data sets of the stations examined and their restored daily data, allowing one to upload newly measured or recovered daily data. Generation of these maps provides a means to track pollen impacts in the context of climatic shifts, identify geographical regions with high pollen exposure, determine areas of future vulnerability, apply spatially-explicit mitigation measures and prioritize management interventions.