Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(22): e2120633119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35605119

RESUMO

Dysregulated epigenetic and transcriptional programming due to abnormalities of transcription factors (TFs) contributes to and sustains the oncogenicity of cancer cells. Here, we unveiled the role of zinc finger protein 280C (ZNF280C), a known DNA damage response protein, as a tumorigenic TF in colorectal cancer (CRC), required for colitis-associated carcinogenesis and Apc deficiency­driven intestinal tumorigenesis in mice. Consistently, ZNF280C silencing in human CRC cells inhibited proliferation, clonogenicity, migration, xenograft growth, and liver metastasis. As a C2H2 (Cys2-His2) zinc finger-containing TF, ZNF280C occupied genomic intervals with both transcriptionally active and repressive states and coincided with CCCTC-binding factor (CTCF) and cohesin binding. Notably, ZNF280C was crucial for the repression program of trimethylation of histone H3 at lysine 27 (H3K27me3)-marked genes and the maintenance of both focal and broad H3K27me3 levels. Mechanistically, ZNF280C counteracted CTCF/cohesin activities and condensed the chromatin environment at the cis elements of certain tumor suppressor genes marked by H3K27me3, at least partially through recruiting the epigenetic repressor structural maintenance of chromosomes flexible hinge domain-containing 1 (SMCHD1). In clinical relevance, ZNF280C was highly expressed in primary CRCs and distant metastases, and a higher ZNF280C level independently predicted worse prognosis of CRC patients. Thus, our study uncovered a contributor with good prognostic value to CRC pathogenesis and also elucidated the essence of DNA-binding TFs in orchestrating the epigenetic programming of gene regulation.


Assuntos
Cromatina , Neoplasias Colorretais , Repressão Epigenética , Fator de Ligação a CCCTC/metabolismo , Carcinogênese/genética , Cromatina/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Proteínas de Ligação a DNA , Histonas/genética , Histonas/metabolismo , Humanos , Prognóstico , Fatores de Transcrição , Dedos de Zinco
2.
Cell Death Dis ; 14(1): 8, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36609474

RESUMO

Abnormal activities of distal cis-regulatory elements (CREs) contribute to the initiation and progression of cancer. Gain of super-enhancer (SE), a highly active distal CRE, is essential for the activation of key oncogenes in various cancers. However, the mechanism of action for most tumor-specific SEs still largely remains elusive. Here, we report that a candidate oncogene ETS2 was activated by a distal SE in inflammatory bowel disease (IBD) and colorectal cancer (CRC). The SE physically interacted with the ETS2 promoter and was required for the transcription activation of ETS2. Strikingly, the ETS2-SE activity was dramatically upregulated in both IBD and CRC tissues when compared to normal colon controls and was strongly correlated with the level of ETS2 expression. The tumor-specific activation of ETS2-SE was further validated by increased enhancer RNA transcription from this region in CRC. Intriguingly, a known IBD-risk SNP resides in the ETS2-SE and the genetic variant modulated the level of ETS2 expression through affecting the binding of an oncogenic transcription factor MECOM. Silencing of MECOM induced significant downregulation of ETS2 in CRC cells, and the level of MECOM and ETS2 correlated well with each other in CRC and IBD samples. Functionally, MECOM and ETS2 were both required for maintaining the colony-formation and sphere-formation capacities of CRC cells and MECOM was crucial for promoting migration. Taken together, we uncovered a novel disease-specific SE that distantly drives oncogenic ETS2 expression in IBD and CRC and delineated a mechanistic link between non-coding genetic variation and epigenetic regulation of gene transcription.


Assuntos
Neoplasias Colorretais , Doenças Inflamatórias Intestinais , Humanos , Epigênese Genética , Fatores de Transcrição/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Colorretais/genética , Doenças Inflamatórias Intestinais/genética , Proteína Proto-Oncogênica c-ets-2/genética , Proteína Proto-Oncogênica c-ets-2/metabolismo , Proteína do Locus do Complexo MDS1 e EVI1/metabolismo
3.
Theranostics ; 10(22): 10016-10030, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32929331

RESUMO

Tumor-initiating cells (TICs) maintain heterogeneity within tumors and seed metastases at distant sites, contributing to therapeutic resistance and disease recurrence. In colorectal cancer (CRC), strategy that effectively eradicates TICs and is of potential value for clinical use still remains in need. Methods: The anti-tumorigenic activity of a small-molecule inhibitor of KDM6 histone demethylases named GSK-J4 in CRC was evaluated by in vitro assays and in vivo imaging of xenografted tumors. Sphere formation, flow cytometry analysis of cell surface markers and intestinal organoid formation were performed to examine the impact of GSK-J4 on TIC properties. Transcriptome analysis and global profiling of H3K27ac, H3K27me3, and KDM6A levels by ChIP-seq were conducted to elucidate how KDM6 inhibition reshapes epigenetic landscape and thereby eliminating TICs. Results: GSK-J4 alleviated the malignant phenotypes of CRC cells in vitro and in vivo, sensitized them to chemotherapeutic treatment, and strongly repressed TIC properties and stemness-associated gene signatures in these cells. Mechanistically, KDM6 inhibition induced global enhancer reprogramming with a preferential impact on super-enhancer-associated genes, including some key genes that control stemness in CRC such as ID1. Besides, expression of both Kdm6a and Kdm6b was more abundant in mouse intestinal crypt when compared with upper villus and inhibition of their activities blocked intestinal organoid formation. Finally, we unveiled the power of KDM6B in predicting both the overall survival outcome and recurrence of CRC patients. Conclusions: Our study provides a novel rational strategy to eradicate TICs through reshaping epigenetic landscape in CRC, which might also be beneficial for optimizing current therapeutics.


Assuntos
Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Histona Desmetilases/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Animais , Benzazepinas/farmacologia , Linhagem Celular Tumoral , Perfilação da Expressão Gênica/métodos , Células HCT116 , Células HT29 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Pirimidinas/farmacologia
4.
J Agric Food Chem ; 67(30): 8348-8360, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31304751

RESUMO

We have recently demonstrated that tau hyperphosphorylation causes diabetic synaptic neurodegeneration of retinal ganglion cells (RGCs), which might be the earliest affair during the pathogenesis of diabetic retinopathy (DR). Thus, there is a pressing need to seek therapeutic agents possessing neuroprotective effects against tau hyperphosphorylation in RGCs for arresting the progression of DR. Here, using a well-characterized diabetes model of db/db mouse, we discovered that topical ocular application of 10 mg/kg/day of ginsenoside Rg1 (GRg1), one of the major active ingredients extracted from Panax ginseng and Panax notoginseng, ameliorated hyperphosphorylated tau-triggered RGCs synaptic neurodegeneration in diabetic mice. The neuroprotective effects of GRg1 on diabetic retinae were abrogated when retinal IRS-1 or Akt was suppressed by intravitreal injection with si-IRS-1 or topically coadministered with a specific inhibitor of Akt, respectively. However, selective repression of retinal GSK3ß by intravitreal administration of si-GSK3ß rescued the neuroprotective properties of GRg1 when Akt was inactivated. Therefore, the present study showed for the first time that GRg1 can prevent hyperphosphorylated tau-induced synaptic neurodegeneration of RGCs via activation of IRS-1/Akt/GSK3ß signaling in the early phase of DR. Moreover, our data clarify the potential therapeutic significance of GRg1 for neuroprotective intervention strategies of DR.


Assuntos
Retinopatia Diabética/tratamento farmacológico , Ginsenosídeos/administração & dosagem , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Ganglionares da Retina/efeitos dos fármacos , Proteínas tau/metabolismo , Animais , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Humanos , Proteínas Substratos do Receptor de Insulina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Degeneração Neural/tratamento farmacológico , Degeneração Neural/genética , Degeneração Neural/metabolismo , Panax notoginseng/química , Fosforilação , Extratos Vegetais/administração & dosagem , Proteínas Proto-Oncogênicas c-akt/genética , Retina/patologia , Células Ganglionares da Retina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas tau/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA