Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Inorg Chem ; 60(3): 1755-1766, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33464879

RESUMO

Z-scheme g-C3N4/Ag3VO4/reduced graphene oxide (rGO) photocatalysts with multi-interfacial electron-transfer paths enhancing CO2 photoreduction under UV-vis light irradiation were successfully prepared by a hydrothermal process. Transmission electron microscope images displayed that the prepared photocatalysts have a unique 2D-0D-2D ternary sandwich structure. Photoelectrochemical characterizations including TPR, electrochemical impedance spectroscopy, photoluminescence, and linear sweep voltammetry explained that the multi-interfacial structure effectively improved the separation and transmission capabilities of photogenerated carriers. Electron spin resonance spectroscopy and band position analysis proved that the electron-transfer mode of g-C3N4/Ag3VO4 meets the Z-scheme mechanism. The introduction of rGO provided more electron-transfer paths for the photocatalysts and enhanced the stability of Ag-based semiconductors. In addition, the π-π conjugation effect between g-C3N4 and rGO further improved the generation and separation efficiency of photogenerated electron-hole pairs. Then, the multiple channels (Ag3VO4 → CN, Ag3VO4 → rGO → CN, and rGO → CN) due to the 2D-0D-2D structure greatly improving the photocatalytic CO2 reduction ability have been discussed in detail.

2.
Environ Res ; 182: 108998, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31863945

RESUMO

This work focused on the utilization of biological extract for the preparation of lignin-based carbon composites materials and used in the field of photocatalysis. A straightforward one-step carbonization way has been developed to prepare vanadium-doped lignin-based carbon/Bi2O3 composites photocatalyst by using sodium lignosulfonate as the carbon source and catalyst. The application of lignin as the carbon source to form photocatalyst support tends to control the uniform distribution. At the same time, sodium lignosulfonate as the catalyst could break down the BiVO4 during carbonization process. A series of characterizations demonstrated the BiVO4 was transformed into Bi2O3 and vanadium-doped lignin-based carbon. The possible synthesis process was proposed. Moreover, the novel V-doped carbon/Bi2O3 composites photocatalyst displayed higher photocatalytic activity than bare BiVO4. A possible photocatalytic mechanism was also discussed. This work provided new insight into the lignin-based carbon materials.


Assuntos
Carbono , Biomassa , Catálise , Fotoquímica
3.
J Nanosci Nanotechnol ; 18(7): 4675-4683, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29442645

RESUMO

Fe3O4/C/BiVO4 composite photocatalyst was fabricated successfully by a simple approach using yeast as a carbon source. Fe3O4/C/BiVO4 sample exhibited higher efficiency for photocatalytic degradation of tetracycline (TC) as compared to pure BiVO4 under visible light. In addition, after five recycles of photodegradation of TC, Fe3O4/C/BiVO4 showed a slight loss in photocatalytic activity, which confirmed its stability and long-time reusability. The photocatalytic mechanism was studied by active species trapping experiments, which revealed that the holes (h+) and superoxide radical (˙O-2) played a key role in TC degradation. Moreover, photocatalyst could be easily recycled by an external magnetic field and reused without any loss in photocatalytic activity. This work provides a simple, eco-friendly and exemplary strategy for improving photodegradation activity of BiVO4-based photocatalyst.

4.
J Environ Sci (China) ; 60: 98-107, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29031452

RESUMO

Visible-light-driven photocatalysis as a green technology has attracted a lot of attention due to its potential applications in environmental remediation. Vesicle CdSe nano-semiconductor photocatalyst are successfully prepared by a gas template method and characterized by a variety of methods. The vesicle CdSe nano-semiconductors display enhanced photocatalytic performance for the degradation of tetracycline hydrochloride, the photodegradation rate of 78.824% was achieved by vesicle CdSe, which exhibited an increase of 31.779% compared to granular CdSe. Such an exceptional photocatalytic capability can be attributed to the unique structure of the vesicle CdSe nano-semiconductor with enhanced light absorption ability and excellent carrier transport capability. Meanwhile, the large surface area of the vesicle CdSe nano-semiconductor can increase the contact probability between catalyst and target and provide more surface-active centers. The photocatalytic mechanisms are analyzed by active species quenching. It indicates that h+ and O2- are the main active species which play a major role in catalyzing environmental toxic pollutants. Simultaneously, the vesicle CdSe nano-semiconductor had high efficiency and stability.


Assuntos
Compostos de Cádmio/química , Modelos Químicos , Processos Fotoquímicos , Compostos de Selênio/química , Semicondutores , Nanoestruturas
5.
Talanta ; 277: 126434, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38879946

RESUMO

Methyl paraoxon (MP) is a highly toxic, efficient and broad-spectrum organophosphorus pesticide, which poses significant risks to ecological environment and human health. Many detection methods for MP are based on the enzyme catalytic or inhibition effect. But natural biological enzymes are relatively expensive and easy to be inactivated with a short service life. As a unique tool of nanotechnology with enzyme-like characteristics, nanozyme has attracted increasing concern. However, a large proportion of nanozymes lack the intrinsic specificity, becoming a main barrier of constraining their use in biochemical analysis. Here, we use a one-pot reverse microemulsion polymerization combine the gold nanoclusters (AuNCs) with molecularly imprinted polymers (MIPs), polydopamine (PDA) and hollow CeO2 nanospheres to synthesize the bright red-orange fluorescence probe (CeO2@PDA@AuNCs-MIPs) with high phosphatase-like activity for selective detection of MP. The hollow structure possesses a specific surface area and porous matrix, which not only increases the exposure of active sites but also enhances the efficiency of mass and electron transport. Consequently, this structure significantly enhances the catalytic activity by reducing transport distances. The introduced MIPs provide the specific recognition sites for MP. And Ce (III) can excite aggregation induced emission of AuNCs and enhance the fluorescent signal. The absolute fluorescence quantum yield (FLQY) of CeO2@PDA@AuNCs-MIPs (1.41 %) was 12.8-fold higher than that of the GSH-AuNCs (0.11 %). With the presence of MP, Ce (IV)/Ce (III) species serve as the active sites to polarize and hydrolyze phosphate bonds to generate p-nitrophenol (p-NP), which can quench the fluorescent signal through the inner-filter effect. The as-prepared CeO2@PDA@AuNCs-MIPs nanozyme-based fluorescence method for MP detection displayed superior analytical performances with wide linearities range of 0.45-125 nM and the detection limit of 0.15 nM. Furthermore, the designed method offers satisfactory practical application ability. The developed method is simple and effective for the in-field detection.


Assuntos
Ouro , Polímeros Molecularmente Impressos , Polímeros , Espectrometria de Fluorescência , Polímeros Molecularmente Impressos/química , Polímeros/química , Espectrometria de Fluorescência/métodos , Ouro/química , Nanopartículas Metálicas/química , Cério/química , Corantes Fluorescentes/química , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/química , Paraoxon/análise , Paraoxon/análogos & derivados , Paraoxon/química , Indóis/química , Fluorescência , Limite de Detecção
6.
Int J Biol Macromol ; 256(Pt 1): 128378, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000569

RESUMO

Polylactic acid (PLA) has garnered significant interest as a bio-based polymer due to its favorable thermal and processing characteristics, as well as its notable economic and environmental benefits. However, the drawbacks such as flammability and poor toughness of PLA severely constrained its applications in more fields. Here, based on the outstanding flame-retardant properties of core-shell flame retardant (CSFR) and the toughening potential of natural rubber (NR), we synthesized inorganic-organic hybrid of CSFR-NR using an aqueous synthesis to synchronous optimization of the comprehensive performance of PLA. The as-prepared CSFR-NR with "hard core and soft shell" possess the ability to promote char formation and facilitate uniform dispersion in the PLA matrix. Consequently, the PLA/CSFR-NR showed an excellent flame retardancy with the limiting oxygen index (LOI) value of 31.5 % and UL-94 V-0 rating and synergistic toughening effect with absolutely improvement in elongation at break and notched izod impact strength, achieving a balance between the fire safety and mechanical performance. Moreover, the degradation rate of PLA has also been substantially promoted by CSFR-NR in simulated seawater. Hence, this study offers a straightforward, efficient, and environmentally friendly strategy for creating high-performance flame retardant and toughened bioplastics.


Assuntos
Retardadores de Chama , Borracha , Poliésteres , Polímeros
7.
Chemosphere ; 275: 130052, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33652277

RESUMO

In this study, we report the construction of a novel composite photocatalyst (BiVO4/rGH) composed of quantum dots (QDs) self-decorated BiVO4-nanoparticels (NPs) and reduced graphene hydrogel (rGH). The composite structures were prepared using an in-situ growth method. The BiVO4/rGH composite photocatalysts exhibited excellent photocatalytic efficiency for the degradation of tetracycline hydrochloride (TCHCl). The promoted photocatalytic activity of the BiVO4/rGH is attributed to the synergetic effects of the unique structure involving QDs self-decorated BiVO4 NPs and a 3D network structure of rGH, which resulted in higher number of photogenerated charge carriers, surplus active sites, and enhanced charge separation. In addition, trapping measurements showed that ·O2- and h+, as the main active species, play a crucial role in the degradation of TCHCl over the composite photocatalyst. This study facilitates the design and construction of high efficiency hybrid photocatalysts with multifunctional materials for the removal of water pollutants.


Assuntos
Grafite , Pontos Quânticos , Antibacterianos , Bismuto , Catálise , Hidrogéis , Luz , Vanadatos
8.
J Colloid Interface Sci ; 581(Pt B): 514-522, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32814183

RESUMO

The Z-scheme BiVO4/α-Fe2O3 photocatalyst was synthesized by a simple hydrothermal method. The photocatalyst is composed of α-Fe2O3 nanocubes with a regular cubic structure and the BiVO4 particles distributed on the surface of the α-Fe2O3 nanocubes. The photocatalytic performance of Z-scheme BiVO4/α-Fe2O3 photocatalyst was investigated in terms of its capacity for photodegradation of tetracycline hydrochloride. Improved photocatalytic activity was observed for Z-scheme BiVO4/α-Fe2O3 photocatalyst compared with pure BiVO4 and α-Fe2O3 nanocubes under visible light irradiation. Studies of its morphology, physicochemical properties and photoelectrochemical behaviors demonstrated that BiVO4 loading on the surface of α-Fe2O3 nanocubes forms a Z-scheme heterojunction, which increases the specific surface area and significantly promotes the separation of photoinduced carriers. The main active species were determined to be OH and h+ by ESR technique and trapping experiments. We propose a possible photocatalytic mechanism of Z-scheme BiVO4/α-Fe2O3 photocatalyst system. This study may also provide a novel and eco-friendly demonstration of a useful strategy for the design and preparation of special structure photocatalytic materials.


Assuntos
Antibacterianos , Bismuto , Catálise , Luz , Vanadatos
9.
ACS Appl Mater Interfaces ; 13(10): 11755-11764, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33683093

RESUMO

Efficient electron transmission is an important step in the process of CO2 photoreduction. In this paper, a multi-interface-contacted In2S3/Au/reduced graphene oxide (rGO) photocatalyst with the fluorescence resonance energy transfer (FRET) mechanism has been successfully prepared by the solvothermal, self-assembly, and hydrothermal reduction processes. Photocatalytic CO2 reduction experiments showed that the In2S3/Au/rGO (IAr-3) composite exhibited excellent photoreduction performance and photocatalytic stability. The yields of CO and CH4 obtained after the photoreduction process with IAr-3 as the catalyst were around 4 and 6 times higher than those of pure In2S3, respectively. Photoelectrochemical analysis showed that the multi-interface contact and FRET mechanism greatly improved the generation, transmission, and separation efficiency of carriers photogenerated within the photocatalyst. In situ FTIR test was applied to analyze the photocatalytic CO2 reduction process. 13C isotope tracer test confirmed that the carbon source of CO and CH4 was the CO2 molecules in the photoreduction process rather than the decomposition of catalyst or TEOA. A potential enhanced photocatalytic mechanism has been discussed in total.

10.
J Colloid Interface Sci ; 578: 574-583, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32544629

RESUMO

Defect structure is one of the crucial factors for enhancing the catalytic activities of photocatalysts. However, rational design and construction of defect structures in catalysts to meet the aim of enhancing photocatalytic performance in a simple and cost-effective way is still a challenge. In this contribution, we report a strategy to construct defect structures in graphitic carbon nitride (g-CN) by simple copolymerizing of urea with polyethyleneimine (PEI). Among the prepared catalysts, u-0.05PEI presents the best photocatalytic activity for CO2 reduction, with CO and CH4 yields of 32.86 and 1.68 µmol g-1 in 4 h, which is about 3.2 and 2.5 times higher than that of g-CN, respectively. Characterization results show that both C and N defects are formed in the newly prepared catalysts. The C defects on the surface of u-xPEI result in the formation of more amino groups which are beneficial for CO2 adsorption. Meanwhile, the N defects inside the samples lead to the generation of midgap states between the valance band and conduction band of u-xPEI. The midgap states greatly enlarge the light absorption extent, and enable the use of light with energy lower than the intrinsic absorption of g-CN in the photoreduction of CO2. As confirmed by DRS, EPR, PL analysis, the excellent catalytic activity of u-0.05PEI is mainly attributed to the remarkably improved light utilization efficiency and fast charge transfer. Moreover, the reaction is performed in water without any additive or organic solvent, which makes it environmentally friendly.

11.
Artigo em Inglês | MEDLINE | ID: mdl-30677735

RESUMO

In this work, a simple method to load of g-C3N4 quantum dots (CN QDs) onto Bi2Ti2O7 (BTO) microsphere with the amount of CN QDs (3, 7, 10 and 15%). The photocatalyst was used for the treatment of water pollutants under visible-light illumination, which proved that CNBTO composites showed improved photocatalytic activity matched up to pure BTO. Reformation of BTO with CN QDs enhanced the light assimilation capacity, and promoted the isolation of photo-induced electron-hole pairs. The trapping experiments and ESR were announced the holes (h+) and superoxide oxide (O2-) played the key role, and the relative mechanism of the photocatalytic process was proposed. Meanwhile, the effects of CN QDs content, pH and initial pollutant concentration on the removal efficiency of ciprofloxacin (CIP) were studied. Results showed that the CN QDs loaded on BTO presented higher photocatalytic efficiency, and an optimum value for the dosage of photocatalytic in pH 8.0.

12.
Dalton Trans ; 48(20): 6824-6833, 2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31017140

RESUMO

The cobalt doped cadmium selenide/biomass carbon spheres (Co-CdSe/BCS) photocatalyst is easily prepared using a transitory hydrothermal reaction lasting 40 min. The Co-CdSe/BCS photocatalyst is constructed using the in situ growth of Co-CdSe nanodots on the surfaces of the BCS. Doped Co2+ generates an electron trap, which can capture the photoinduced electrons, resulting in the efficient separation of the photoinduced electron-hole pairs. Furthermore, the introduction of carbon spheres enhances the optical absorption property and the ability for electron transport. Results of electrochemical characterization and photoluminescence spectra demonstrate that the Co-CdSe/BCS is able to efficiently separate electron-hole pairs and inhibit their recombination. The as-synthesized samples display high efficiency for the photodegradation of methylene blue dye under visible light. This study offers a new strategy to promote photocatalytic performance of the CdSe photocatalyst.

13.
Front Chem ; 6: 69, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29616215

RESUMO

The dual-functional Ca12Al14O33: Tb3+ and Ca12Al14O33: Sm3+ materials were prepared by the Self-Propagating Combustion Synthesis (SPCS) technology. The structure, morphology and light absorption property were investigated by XRD, FT-IR, UV-Vis DRS and SEM etc. The doping of Tb3+ and Sm3+ ions had not changed cubic structure of Ca12Al14O33 but leaded to the slight lattice dilatation and the red-shifts of absorption peaks/edges. The excitation and emission spectra indicated that Ca12Al14O33: Tb3+ and Ca12Al14O33: Sm3+ are superior green and red luminescent materials, respectively, and it displayed the distinctly refined structure characteristics which had importantly reference value for the energy level investigation of Tb3+ and Sm3+ ions. Meanwhile, Ca12Al14O33: Tb3+ and Ca12Al14O33: Sm3+ also exhibited the improved photocatalytic degradation for removing dye MB compared with bare Ca12Al14O33.

14.
Nanomaterials (Basel) ; 8(12)2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30544495

RESUMO

TiO2/Ag bilayer films sputtered onto a 2D polystyrene (PS) bead array in a magnetron sputtering system were found to form a nanocap-shaped nanostructure composed of a TiO2-Ag composite on each PS bead, in which the Ag nanoparticles were trapped partially or fully in the TiO2 matrix, depending on the TiO2 thickness. X-ray Photoelectron Spectroscopy (XPS) results showed the opposite shifts of binding energy for Ti 2p and Ag 3d, indicating the transfer of electrons from metallic Ag to TiO2 owing to the Ag-O-TiO2 composite formation. UV-Vis absorption spectra showed the blue shifts of the surface plasma resonance peaks, and the maximum absorption peak intensity was obtained for TiO2 at 30 nm. The surface-enhanced Raman scattering (SERS) peak intensity first increased and then decreased when the TiO2 thickness changed. The observations of SERS, XPS, and UV-Vis absorption spectra were explained by the dependency of the charge-transfer process on TiO2 thickness, which was ascribed to the changing dielectric properties in the metal/semiconductor system.

15.
ACS Appl Mater Interfaces ; 7(51): 28231-43, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26669327

RESUMO

Plasmonic heteronanostructures in semiconductor type display extraordinary photocatalytic efficiency induced by the plasmonic energy that operates in the Ag@CdSe-rGO hybrid ternary composites. The obtained plasmonic photocatalysts in nanoscale were fabricated by using a one-step hydrothermal method, during which the in situ nucleation of Ag@CdSe core-shell nanoparticles and the reduction of GO to rGO occurred simultaneously. Three different roles of Ag core and the junction of synergistic properties arising from the introduced rGO jointly enhanced the optical properties of CdSe. Localized plasmon resonance (LPR) effects of plasmonic Ag contribute to the separation of photogenerated e(-)/h(+) pairs via the electrons and resonant energy transfer. Electrochemical investigations have further confirmed the enhanced separation of the photogenerated e(-)/h(+) pairs. From comparative photocatalytic experiments of Ag@CdSe-rGO and Ag/CdSe-rGO, the plasmonic effect of the Ag core in the Ag@CdSe-rGO nanostructure serves to prolong the charge separation under visible light beyond common attached trimers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA