Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cell Mol Life Sci ; 81(1): 310, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066929

RESUMO

Anatomically connected bones and muscles determine movement of the body. Forces exerted on muscles are then turned to bones to promote osteogenesis. The crosstalk between muscle and bone has been identified as mechanotransduction previously. In addition to the mechanical features, bones and muscles are also secretory organs which interact closely with one another through producing myokines and osteokines. Moreover, besides the mechanical features, other factors, such as nutrition metabolism, physiological rhythm, age, etc., also affect bone-muscle crosstalk. What's more, osteogenesis and myogenesis within motor system occur almost in parallel. Pathologically, defective muscles are always detected in bone associated diseases and induce the osteopenia, inflammation and abnormal bone metabolism, etc., through biomechanical or biochemical coupling. Hence, we summarize the study findings of bone-muscle crosstalk and propose potential strategies to improve the skeletal or muscular symptoms of certain diseases. Altogether, functional improvement of bones or muscles is beneficial to each other within motor system.


Assuntos
Osso e Ossos , Músculo Esquelético , Humanos , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Músculo Esquelético/metabolismo , Animais , Osteogênese/fisiologia , Mecanotransdução Celular , Desenvolvimento Muscular
2.
Cell Mol Life Sci ; 81(1): 338, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120703

RESUMO

Alveolar bone loss is a main manifestation of periodontitis. Human periodontal ligament stem cells (PDLSCs) are considered as optimal seed cells for alveolar bone regeneration due to its mesenchymal stem cell like properties. Osteogenic potential is the premise for PDLSCs to repair alveolar bone loss. However, the mechanism regulating osteogenic differentiation of PDLSCs remain elusive. In this study, we identified Neuron-derived orphan receptor 1 (NOR1), was particularly expressed in PDL tissue in vivo and gradually increased during osteogenic differentiation of PDLSCs in vitro. Knockdown of NOR1 in hPDLSCs inhibited their osteogenic potential while NOR1 overexpression reversed this effect. In order to elucidate the downstream regulatory network of NOR1, RNA-sequencing was used. We found that downregulated genes were mainly enriched in TGF-ß, Hippo, Wnt signaling pathway. Further, by western blot analysis, we verified that the expression level of phosphorylated-SMAD2/3 and phosphorylated-SMAD4 were all decreased after NOR1 knockdown. Additionally, ChIP-qPCR and dual luciferase reporter assay indicated that NOR1 could bind to the promoter of TGFBR1 and regulate its activity. Moreover, overexpression of TGFBR1 in PDLSCs could rescue the damaged osteogenic potential after NOR1 knockdown. Taken together, our results demonstrated that NOR1 could activate TGF-ß/SMAD signaling pathway and positively regulates the commitment of osteoblast lineages of PDLSCs by targeting TGFBR1 directly.


Assuntos
Diferenciação Celular , Osteoblastos , Osteogênese , Ligamento Periodontal , Receptor do Fator de Crescimento Transformador beta Tipo I , Transdução de Sinais , Fator de Crescimento Transformador beta , Humanos , Diferenciação Celular/genética , Células Cultivadas , Osteoblastos/metabolismo , Osteoblastos/citologia , Osteogênese/genética , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Células-Tronco/metabolismo , Células-Tronco/citologia , Fator de Crescimento Transformador beta/metabolismo
3.
Cell Mol Life Sci ; 80(8): 223, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37480504

RESUMO

Kindlin-2 is critical for development and homeostasis of key organs, including skeleton, liver, islet, etc., yet its role in modulating angiogenesis is unknown. Here, we report that sufficient KINDLIN-2 is extremely important for NOTCH-mediated physiological angiogenesis. The expression of KINDLIN-2 in HUVECs is significantly modulated by angiogenic factors such as vascular endothelial growth factor A or tumor necrosis factor α. A strong co-localization of CD31 and Kindlin-2 in tissue sections is demonstrated by immunofluorescence staining. Endothelial-cell-specific Kindlin-2 deletion embryos die on E10.5 due to hemorrhage caused by the impaired physiological angiogenesis. Experiments in vitro show that vascular endothelial growth factor A-induced multiple functions of endothelial cells, including migration, matrix proteolysis, morphogenesis and sprouting, are all strengthened by KINDLIN-2 overexpression and severely impaired in the absence of KINDLIN-2. Mechanistically, we demonstrate that KINDLIN-2 inhibits the release of Notch intracellular domain through binding to and maintaining the integrity of NOTCH1. The impaired angiogenesis and avascular retinas caused by KINDLIN-2 deficiency can be rescued by DAPT, an inhibitor of γ-secretase which releases the intracellular domain from NOTCH1. Moreover, we demonstrate that high glucose stimulated hyperactive angiogenesis by increasing KINDLIN-2 expression could be prevented by KINDLIN-2 knockdown, indicating Kindlin-2 as a potential therapeutic target in treatment of diabetic retinopathy. Our study for the first time demonstrates the significance of Kindlin-2 in determining Notch-mediated angiogenesis during development and highlights Kindlin-2 as the potential therapeutic target in angiogenic diseases, such as diabetic retinopathy.


Assuntos
Retinopatia Diabética , Humanos , Fenômenos Fisiológicos Cardiovasculares , Células Endoteliais , Morfogênese , Fator A de Crescimento do Endotélio Vascular/genética
4.
Acta Pharmacol Sin ; 44(2): 268-287, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35896695

RESUMO

Fibrosis is caused by extensive deposition of extracellular matrix (ECM) components, which play a crucial role in injury repair. Fibrosis attributes to ~45% of all deaths worldwide. The molecular pathology of different fibrotic diseases varies, and a number of bioactive factors are involved in the pathogenic process. Mesenchymal stem cells (MSCs) are a type of multipotent stem cells that have promising therapeutic effects in the treatment of different diseases. Current updates of fibrotic pathogenesis reveal that residential MSCs may differentiate into myofibroblasts which lead to the fibrosis development. However, preclinical and clinical trials with autologous or allogeneic MSCs infusion demonstrate that MSCs can relieve the fibrotic diseases by modulating inflammation, regenerating damaged tissues, remodeling the ECMs, and modulating the death of stressed cells after implantation. A variety of animal models were developed to study the mechanisms behind different fibrotic tissues and test the preclinical efficacy of MSC therapy in these diseases. Furthermore, MSCs have been used for treating liver cirrhosis and pulmonary fibrosis patients in several clinical trials, leading to satisfactory clinical efficacy without severe adverse events. This review discusses the two opposite roles of residential MSCs and external MSCs in fibrotic diseases, and summarizes the current perspective of therapeutic mechanism of MSCs in fibrosis, through both laboratory study and clinical trials.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Fibrose Pulmonar , Animais , Fibrose , Cirrose Hepática/terapia , Cirrose Hepática/patologia , Fibrose Pulmonar/terapia , Fibrose Pulmonar/patologia , Inflamação/patologia
5.
Bioorg Med Chem ; 29: 115902, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33302045

RESUMO

ß-lactam antibiotics have long been the mainstay for the treatment of bacterial infections. New Delhi metallo-ß-lactamase 1 (NDM-1) is able to hydrolyze nearly all ß-lactam antibiotics and even clinically used serine-ß-lactamase inhibitors. The wide and rapid spreading of NDM-1 gene among pathogenic bacteria has attracted extensive attention, therefore high potency NDM-1 inhibitors are urgently needed. Here we report a series of structure-guided design of D-captopril derivatives that can inhibit the activity of NDM-1 in vitro and at cellular levels. Structural comparison indicates the mechanisms of inhibition enhancement and provides insights for further inhibitor optimization.


Assuntos
Antibacterianos/química , Captopril/química , Inibidores de beta-Lactamases/química , beta-Lactamases/metabolismo , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/química , Sítios de Ligação , Captopril/metabolismo , Captopril/farmacologia , Cristalografia por Raios X , Descoberta de Drogas , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Humanos , Hidrólise/efeitos dos fármacos , Modelos Moleculares , Ligação Proteica , Relação Estrutura-Atividade , Compostos de Sulfidrila/química , Inibidores de beta-Lactamases/metabolismo , Inibidores de beta-Lactamases/farmacologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-30150473

RESUMO

ß-Lactam antibiotics are the mainstay for the treatment of bacterial infections. However, elevated resistance to these antibiotics mediated by metallo-ß-lactamases (MBLs) has become a global concern. New Delhi metallo-ß-lactamase-1 (NDM-1), a newly added member of the MBL family that can hydrolyze almost all ß-lactam antibiotics, has rapidly spread all over the world and poses serious clinical threats. Broad-spectrum and mechanism-based inhibitors against all MBLs are highly desired, but the differential mechanisms of MBLs toward different antibiotics pose a great challenge. To facilitate the design of mechanism-based inhibitors, we investigated the active-site conformational changes of NDM-1 through the determination of a series of 15 high-resolution crystal structures in native form and in complex with products and by using biochemical and biophysical studies, site-directed mutagenesis, and molecular dynamics computation. The structural studies reveal the consistency of the active-site conformations in NDM-1/product complexes and the fluctuation in native NDM-1 structures. The enzymatic measurements indicate a correlation between enzymatic activity and the active-site fluctuation, with more fluctuation favoring higher activity. This correlation is further validated by structural and enzymatic studies of the Q123G mutant. Our combinational studies suggest that active-site conformational fluctuation promotes the enzymatic activity of NDM-1, which may guide further mechanism studies and inhibitor design.


Assuntos
beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Domínio Catalítico/efeitos dos fármacos , Escherichia coli/metabolismo , Humanos , Conformação Proteica/efeitos dos fármacos
7.
Ageing Res Rev ; 99: 102372, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38880342

RESUMO

Understanding the intricate interplay between sensory nerves and bone tissue cells is of paramount significance in the field of bone biology and clinical medicine. The regulatory role of sensory nerves in bone homeostasis offers a novel perspective for the development of targeted therapeutic interventions for a spectrum of bone-related diseases, including osteoarthritis, osteoporosis, and intervertebral disc degeneration. By elucidating the mechanisms through which sensory nerves and their neuropeptides influence the differentiation and function of bone tissue cells, this review aims to shed light on emerging therapeutic targets that harness the neuro-skeletal axis for the treatment and management of debilitating bone disorders. Moreover, a comprehensive understanding of sensory nerve-mediated bone regulation may pave the way for the development of innovative strategies to promote bone health and mitigate the burden of skeletal pathologies in clinical practice.


Assuntos
Doenças Ósseas , Osso e Ossos , Homeostase , Células Receptoras Sensoriais , Humanos , Homeostase/fisiologia , Osso e Ossos/fisiologia , Osso e Ossos/metabolismo , Animais , Células Receptoras Sensoriais/fisiologia , Doenças Ósseas/terapia , Doenças Ósseas/fisiopatologia
8.
Cell Rep Med ; 5(8): 101665, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39168101

RESUMO

Mesenchymal stromal cell (MSC) senescence is a key factor in skeletal aging, affecting the potential of MSC applications. Identifying targets to prevent MSC and skeletal senescence is crucial. Here, we report increased miR-29 expression in bone tissues of aged mice, osteoporotic patients, and senescent MSCs. Genetic overexpression of miR-29 in Prx1-positive MSCs significantly accelerates skeletal senescence, reducing cortical bone thickness and trabecular bone mass, while increasing femur cross-sectional area, bone marrow adiposity, p53, and senescence-associated secretory phenotype (SASP) levels. Mechanistically, miR-29 promotes senescence by upregulating p53 via targeting Kindlin-2 mRNA. miR-29 knockdown in BMSCs impedes skeletal senescence, enhances bone mass, and accelerates calvarial defect regeneration, also reducing lipopolysaccharide (LPS)-induced organ injuries and mortality. Thus, our findings underscore miR-29 as a promising therapeutic target for senescence-related skeletal diseases and acute inflammation-induced organ damage.


Assuntos
Senescência Celular , Células-Tronco Mesenquimais , MicroRNAs , Animais , Feminino , Humanos , Masculino , Camundongos , Envelhecimento , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Lipopolissacarídeos/farmacologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoporose/genética , Osteoporose/patologia , Osteoporose/terapia , Osteoporose/metabolismo , Fenótipo Secretor Associado à Senescência/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética
9.
Cell Death Differ ; 31(1): 90-105, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38062244

RESUMO

Mesenchymal stromal cells (MSCs) are used to treat infectious and immune diseases and disorders; however, its mechanism(s) remain incompletely defined. Here we find that bone marrow stromal cells (BMSCs) lacking Pinch1/2 proteins display dramatically reduced ability to suppress lipopolysaccharide (LPS)-induced acute lung injury and dextran sulfate sodium (DSS)-induced inflammatory bowel disease in mice. Prx1-Cre; Pinch1f/f; Pinch2-/- transgenic mice have severe defects in both immune and hematopoietic functions, resulting in premature death, which can be restored by intravenous injection of wild-type BMSCs. Single cell sequencing analyses reveal dramatic alterations in subpopulations of the BMSCs in Pinch mutant mice. Pinch loss in Prx1+ cells blocks differentiation and maturation of hematopoietic cells in the bone marrow and increases production of pro-inflammatory cytokines TNF-α and IL-1ß in monocytes. We find that Pinch is critical for expression of Cxcl12 in BMSCs; reduced production of Cxcl12 protein from Pinch-deficient BMSCs reduces expression of the Mbl2 complement in hepatocytes, thus impairing the innate immunity and thereby contributing to infection and death. Administration of recombinant Mbl2 protein restores the lethality induced by Pinch loss in mice. Collectively, we demonstrate that the novel Pinch-Cxcl12-Mbl2 signaling pathway promotes the interactions between bone and liver to modulate immunity and hematopoiesis and may provide a useful therapeutic target for immune and infectious diseases.


Assuntos
Osso e Ossos , Citocinas , Fígado , Animais , Camundongos , Osso e Ossos/imunologia , Osso e Ossos/metabolismo , Células da Medula Óssea , Citocinas/metabolismo , Fígado/imunologia , Fígado/metabolismo , Camundongos Transgênicos , Transdução de Sinais , Quimiocina CXCL12/metabolismo , Proteínas com Domínio LIM/metabolismo , Lectina de Ligação a Manose/metabolismo , Hematopoese
10.
Acta Pharm Sin B ; 13(10): 3963-3987, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37799379

RESUMO

The ubiquitin-proteasome system (UPS) dedicates to degrade intracellular proteins to modulate demic homeostasis and functions of organisms. These enzymatic cascades mark and modifies target proteins diversly through covalently binding ubiquitin molecules. In the UPS, E3 ubiquitin ligases are the crucial constituents by the advantage of recognizing and presenting proteins to proteasomes for proteolysis. As the major regulators of protein homeostasis, E3 ligases are indispensable to proper cell manners in diverse systems, and they are well described in physiological bone growth and bone metabolism. Pathologically, classic bone-related diseases such as metabolic bone diseases, arthritis, bone neoplasms and bone metastasis of the tumor, etc., were also depicted in a UPS-dependent manner. Therefore, skeletal system is versatilely regulated by UPS and it is worthy to summarize the underlying mechanism. Furthermore, based on the current status of treatment, normal or pathological osteogenesis and tumorigenesis elaborated in this review highlight the clinical significance of UPS research. As a strategy possibly remedies the limitations of UPS treatment, emerging PROTAC was described comprehensively to illustrate its potential in clinical application. Altogether, the purpose of this review aims to provide more evidence for exploiting novel therapeutic strategies based on UPS for bone associated diseases.

11.
Bioact Mater ; 20: 610-626, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35846848

RESUMO

A novel sprayable adhesive is established (ZnMet-PF127) by the combination of a thermosensitive hydrogel (Pluronic F127, PF127) and a coordination complex of zinc and metformin (ZnMet). Here we demonstrate that ZnMet-PF127 potently promotes the healing of traumatic skin defect and burn skin injury by promoting cell proliferation, angiogenesis, collagen formation. Furthermore, we find that ZnMet could inhibit reactive oxygen species (ROS) production through activation of autophagy, thereby protecting cell from oxidative stress induced damage and promoting healing of skin wound. ZnMet complex exerts better effects on promoting skin wound healing than ZnCl2 or metformin alone. ZnMet complex also displays excellent antibacterial activity against Staphylococcus aureus or Escherichia coli, which could reduce the incidence of skin wound infections. Collectively, we demonstrate that sprayable PF127 could be used as a new drug delivery system for treatment of skin injury. The advantages of this sprayable system are obvious: (1) It is convenient to use; (2) The hydrogel can cover irregular skin defect sites evenly in a liquid state. In combination with this system, we establish a novel sprayable adhesive (ZnMet-PF127) and demonstrate that it is a potential clinical treatment for traumatic skin defect and burn skin injury.

12.
Cell Death Dis ; 14(10): 709, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37903776

RESUMO

Insufficient pancreatic ß-cell mass and reduced insulin expression are key events in the pathogenesis of diabetes mellitus (DM). Here we demonstrate the high expression of Talin-1 in ß-cells and that deficiency of Talin-1 reduces ß-cell proliferation, which leads to reduced ß-cell mass and insulin expression, thus causing glucose intolerance without affecting peripheral insulin sensitivity in mice. High-fat diet fed exerbates these phenotypes. Mechanistically, Talin-1 interacts with the E3 ligase smad ubiquitination regulatory factor 1 (Smurf1), which prohibits ubiquitination of the signal transducer and activator of transcription 3 (Stat3) mediated by Smurf1, and ablation of Talin-1 enhances Smurf1-mediated ubiquitination of Stat3, leading to decreased ß-cell proliferation and mass. Furthermore, haploinsufficiency of Talin-1 and Stat3 genes, but not that of either gene, in ß-cell in mice significantly impairs glucose tolerance and insulin expression, indicating that both factors indeed function in the same genetic pathway. Finally, inducible deletion Talin-1 in ß-cell causes glucose intolerance in adult mice. Collectively, our findings reveal that Talin-1 functions as a crucial regulator of ß-cell mass, and highlight its potential as a therapeutic target for DM patients.


Assuntos
Intolerância à Glucose , Talina , Adulto , Animais , Humanos , Camundongos , Proliferação de Células , Insulina/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Talina/genética , Talina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
13.
Acta Pharm Sin B ; 13(11): 4535-4552, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37969743

RESUMO

Osteoporosis (OP) is a systemic skeletal disease that primarily affects the elderly population, which greatly increases the risk of fractures. Here we report that Kindlin-2 expression in adipose tissue increases during aging and high-fat diet fed and is accompanied by decreased bone mass. Kindlin-2 specific deletion (K2KO) controlled by Adipoq-Cre mice or adipose tissue-targeting AAV (AAV-Rec2-CasRx-sgK2) significantly increases bone mass. Mechanistically, Kindlin-2 promotes peroxisome proliferator-activated receptor gamma (PPARγ) activation and downstream fatty acid binding protein 4 (FABP4) expression through stabilizing fatty acid synthase (FAS), and increased FABP4 inhibits insulin expression and decreases bone mass. Kindlin-2 inhibition results in accelerated FAS degradation, decreased PPARγ activation and FABP4 expression, and therefore increased insulin expression and bone mass. Interestingly, we find that FABP4 is increased while insulin is decreased in serum of OP patients. Increased FABP4 expression through PPARγ activation by rosiglitazone reverses the high bone mass phenotype of K2KO mice. Inhibition of FAS by C75 phenocopies the high bone mass phenotype of K2KO mice. Collectively, our study establishes a novel Kindlin-2/FAS/PPARγ/FABP4/insulin axis in adipose tissue modulating bone mass and strongly indicates that FAS and Kindlin-2 are new potential targets and C75 or AAV-Rec2-CasRx-sgK2 treatment are potential strategies for OP treatment.

14.
Curr Med Chem ; 27(7): 1132-1150, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30360704

RESUMO

BACKGROUND: Antibiotic resistance is currently a serious problem for global public health. To this end, discovery of new antibacterial drugs that interact with novel targets is important. The biosynthesis of lipoproteins is vital to bacterial survival and its inhibitors have shown efficacy against a range of bacteria, thus bacterial lipoprotein biosynthetic pathway is a potential target. METHODS: At first, the literature that covered the basic concept of bacterial lipoprotein biosynthetic pathway as well as biochemical characterization of three key enzymes was reviewed. Then, the recently resolved crystal structures of the three enzymes were retrieved from Protein Data Bank (PDB) and the essential residues in the active sites were analyzed. Lastly, all the available specific inhibitors targeting this pathway and their Structure-activity Relationship (SAR) were discussed. RESULTS: We briefly introduce the bacterial lipoprotein biosynthetic pathway and describe the structures and functions of three key enzymes in detail. In addition, we present much knowledge on ligand recognition that may facilitate structure-based drug design. Moreover, we focus on the SAR of LspA inhibitors and discuss their potency and drug-likeness. CONCLUSION: This review presents a clear background of lipoprotein biosynthetic pathway and provides practical clues for structure-based drug design. In particular, the most up-to-date knowledge on the SAR of lead compounds targeting this pathway would be a good reference for discovery of a novel class of antibacterial agents.


Assuntos
Antibacterianos/uso terapêutico , Bactérias , Proteínas de Bactérias , Vias Biossintéticas , Desenho de Fármacos , Lipoproteínas
15.
Artigo em Inglês | MEDLINE | ID: mdl-32373550

RESUMO

Mycoplasma hyopneumoniae (M. hyopneumoniae) is the causative agent of pandemic pneumonia among pigs, namely, swine enzootic pneumonia. Although M. hyopneumoniae was first identified in 1965, little is known regarding its metabolic pathways, which might play a pivotal role during disease pathogenesis. Lipoate is an essential cofactor for enzymes important for central metabolism. However, the lipoate metabolism pathway in M. hyopneumoniae is definitely unclear. Here, we identified a novel gene, lpl, encoding a lipoate protein ligase in the genome of M. hyopneumoniae (Mhp-Lpl). This gene contains 1,032 base pairs and encodes a protein of 343 amino acids, which is between 7.5 and 36.09% identical to lipoate protein ligases (Lpls) of other species. Similar to its homologs in other species, Mhp-Lpl catalyzes the ATP-dependent activation of lipoate to lipoyl-AMP and the transfer of the activated lipoyl onto the lipoyl domains of M. hyopneumoniae GcvH (Mhp H) in vitro. Enzymatic and mutagenesis analysis indicate that residue K56 within the SKT sequence of Mhp H protein is the lipoyl moiety acceptor site. The three-dimensional structure showed typical lipoate protein ligase folding, with a large N-terminal domain and a small C-terminal domain. The large N-terminal domain is responsible for the full enzymatic activity of Mhp-Lpl. The identification and characterization of Mhp-Lpl will be beneficial to our understanding of M. hyopneumoniae metabolism. Summary: Lipoic acid is an essential cofactor for the activation of some enzyme complexes involved in key metabolic processes. Lipoate protein ligases (Lpls) are responsible for the metabolism of lipoic acid. To date, little is known regarding the Lpls in M. hyopneumoniae. In this study, we identified a lipoate protein ligase of M. hyopneumoniae. We further analyzed the function, overall structure and ligand-binding site of this protein. The lipoate acceptor site on M. hyopneumoniae GcvH was also identified. Together, these findings reveal that Lpl exists in M. hyopneumoniae and will provide a basis for further exploration of the pathway of lipoic acid metabolism in M. hyopneumoniae.


Assuntos
Mycoplasma hyopneumoniae , Pneumonia Suína Micoplasmática , Ácido Tióctico , Sequência de Aminoácidos , Animais , Sítios de Ligação , Mycoplasma hyopneumoniae/genética , Mycoplasma hyopneumoniae/metabolismo , Suínos , Ácido Tióctico/metabolismo
16.
Eur J Med Chem ; 188: 112022, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31901744

RESUMO

Due to the occurrence of antibiotic resistance, bacterial infectious diseases have become a serious threat to public health. To overcome antibiotic resistance, novel antibiotics are urgently needed. N-thiadiazole-4-hydroxy-2-quinolone-3-carboxamides are a potential new class of antibacterial agents, as one of its derivatives was identified as an antibacterial agent against S. aureus. However, no potency-directed structural optimization has been performed. In this study, we designed and synthesized 37 derivatives, and evaluated their antibacterial activity against S. aureus ATCC29213, which led to the identification of ten potent antibacterial agents with minimum inhibitory concentration (MIC) values below 1 µg/mL. Next, we performed bacterial growth inhibition assays against a panel of drug-resistant clinical isolates, including methicillin-resistant S. aureus, and cytotoxicity assays with HepG2 and HUVEC cells. One of the tested compounds named 1-ethyl-4-hydroxy-2-oxo-N-(5-(thiazol-2-yl)-1,3,4-thiadiazol-2-yl)-1,2-dihydroquinoline-3-carboxamide (g37) showed 2 to 128-times improvement compared with vancomycin in term of antibacterial potency against the tested strains (MICs: 0.25-1 µg/mL vs. 1-64 µg/mL) and an optimal selective toxicity (HepG2/MRSA, 110.6 to 221.2; HUVEC/MRSA, 77.6-155.2). Further, comprehensive evaluation indicated that g37 did not induce resistance development of MRSA over 20 passages, and it has been confirmed as a bactericidal, metabolically stable, orally active antibacterial agent. More importantly, we have identified the S. aureus DNA gyrase B as its potential target and proposed a potential binding mode by molecular docking. Taken together, the present work reports the most potent derivative of this chemical series (g37) and uncovers its potential target, which lays a solid foundation for further lead optimization facilitated by the structure-based drug design technique.


Assuntos
Antibacterianos/farmacologia , Quinolonas/farmacologia , Tiadiazóis/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/toxicidade , DNA Girase/metabolismo , Desenho de Fármacos , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecium/efeitos dos fármacos , Feminino , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/enzimologia , Camundongos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Quinolonas/síntese química , Quinolonas/toxicidade , Staphylococcus epidermidis/efeitos dos fármacos , Relação Estrutura-Atividade , Tiadiazóis/síntese química , Tiadiazóis/toxicidade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/toxicidade
17.
Nat Commun ; 9(1): 439, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29382822

RESUMO

Drug-resistant superbugs pose a huge threat to human health. Infections by Enterobacteriaceae producing metallo-ß-lactamases (MBLs), e.g., New Delhi metallo-ß-lactamase 1 (NDM-1) are very difficult to treat. Development of effective MBL inhibitors to revive the efficacy of existing antibiotics is highly desirable. However, such inhibitors are not clinically available till now. Here we show that an anti-Helicobacter pylori drug, colloidal bismuth subcitrate (CBS), and related Bi(III) compounds irreversibly inhibit different types of MBLs via the mechanism, with one Bi(III) displacing two Zn(II) ions as revealed by X-ray crystallography, leading to the release of Zn(II) cofactors. CBS restores meropenem (MER) efficacy against MBL-positive bacteria in vitro, and in mice infection model, importantly, also slows down the development of higher-level resistance in NDM-1-positive bacteria. This study demonstrates a high potential of Bi(III) compounds as the first broad-spectrum B1 MBL inhibitors to treat MBL-positive bacterial infection in conjunction with existing carbapenems.


Assuntos
Anti-Infecciosos/farmacologia , Compostos Organometálicos/farmacologia , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/metabolismo , Animais , Anti-Infecciosos/química , Bismuto/química , Bismuto/metabolismo , Bismuto/farmacologia , Carbapenêmicos/farmacologia , Domínio Catalítico , Cristalografia por Raios X , Cães , Avaliação Pré-Clínica de Medicamentos/métodos , Evolução Molecular , Feminino , Células Madin Darby de Rim Canino/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Compostos Organometálicos/química , Peritonite/tratamento farmacológico , Peritonite/microbiologia , Zinco/metabolismo , Resistência beta-Lactâmica/efeitos dos fármacos , beta-Lactamases/química
18.
Int J Biol Sci ; 14(7): 799-806, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29910690

RESUMO

The insulin-like growth factors (IGFs), IGF-I and IGF-II, are essential for regulating cell growth, differentiation and metastasis of a broad range of malignancies. The IGF-I/II actions are mediated through the IGF receptor type 1 (IGF-1R) and the insulin receptor (IR), which are overexpressed in multiple types of tumors. Here, we have firstly identified a human engineered antibody domain (eAd) from a phage-displayed VH library. The eAd suppressed the signal transduction of IGF-1R mediated by exogenous IGF-I or IGF-II in breast cancer cell lines through neutralizing both IGF-I and IGF-II. It also significantly inhibited the growth of breast cancer cells. Therefore, the anti-IGF-I/II eAd offers an alternative approach to target both the IGF-1R signaling pathways through the inhibition of IGF-I/II.


Assuntos
Neoplasias da Mama/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Proliferação de Células/fisiologia , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like II/genética , Fosforilação/genética , Fosforilação/fisiologia , Transdução de Sinais
19.
Sci Rep ; 6: 39540, 2016 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-28000749

RESUMO

The newly identified mobile colistin resistant gene (mcr-1) rapidly spread among different bacterial strains and confers colistin resistance to its host, which has become a global concern. Based on sequence alignment, MCR-1 should be a phosphoethanolamine transferase, members of the YhjW/YjdB/YijP superfamily and catalyze the addition of phosphoethanolamine to lipid A, which needs to be validated experimentally. Here we report the first high-resolution crystal structure of the C-terminal catalytic domain of MCR-1 (MCR-1C) in its native state. The active pocket of native MCR-1C depicts unphosphorylated nucleophilic residue Thr285 in coordination with two Zinc ions and water molecules. A flexible adjacent active site loop (aa: Lys348-365) pose an open conformation compared to its structural homologues, suggesting of an open substrate entry channel. Taken together, this structure sets ground for further study of substrate binding and MCR-1 catalytic mechanism in development of potential therapeutic agents.


Assuntos
Cristalografia por Raios X , Proteínas de Escherichia coli/química , Sítios de Ligação , Proteínas de Transporte/química , Domínio Catalítico , Cátions , Colistina/química , Etanolaminas/química , Íons , Lipídeo A/química , Proteínas de Membrana/química , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA