Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 591(7850): 385-390, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33731947

RESUMO

Two-dimensional (2D) materials1,2 and the associated van der Waals (vdW) heterostructures3-7 have provided great flexibility for integrating distinct atomic layers beyond the traditional limits of lattice-matching requirements, through layer-by-layer mechanical restacking or sequential synthesis. However, the 2D vdW heterostructures explored so far have been usually limited to relatively simple heterostructures with a small number of blocks8-18. The preparation of high-order vdW superlattices with larger number of alternating units is exponentially more difficult, owing to the limited yield and material damage associated with each sequential restacking or synthesis step8-29. Here we report a straightforward approach to realizing high-order vdW superlattices by rolling up vdW heterostructures. We show that a capillary-force-driven rolling-up process can be used to delaminate synthetic SnS2/WSe2 vdW heterostructures from the growth substrate and produce SnS2/WSe2 roll-ups with alternating monolayers of WSe2 and SnS2, thus forming high-order SnS2/WSe2 vdW superlattices. The formation of these superlattices modulates the electronic band structure and the dimensionality, resulting in a transition of the transport characteristics from semiconducting to metallic, from 2D to one-dimensional (1D), with an angle-dependent linear magnetoresistance. This strategy can be extended to create diverse 2D/2D vdW superlattices, more complex 2D/2D/2D vdW superlattices, and beyond-2D materials, including three-dimensional (3D) thin-film materials and 1D nanowires, to generate mixed-dimensional vdW superlattices, such as 3D/2D, 3D/2D/2D, 1D/2D and 1D/3D/2D vdW superlattices. This study demonstrates a general approach to producing high-order vdW superlattices with widely variable material compositions, dimensions, chirality and topology, and defines a rich material platform for both fundamental studies and technological applications.

2.
Chem Rev ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39189449

RESUMO

Two-dimensional (2D) transition metal dichalcogenide (TMD) heterostructures have attracted a lot of attention due to their rich material diversity and stack geometry, precise controllability of structure and properties, and potential practical applications. These heterostructures not only overcome the inherent limitations of individual materials but also enable the realization of new properties through appropriate combinations, establishing a platform to explore new physical and chemical properties at micro-nano-pico scales. In this review, we systematically summarize the latest research progress in the synthesis, modulation, and application of 2D TMD heterostructures. We first introduce the latest techniques for fabricating 2D TMD heterostructures, examining the rationale, mechanisms, advantages, and disadvantages of each strategy. Furthermore, we emphasize the importance of characteristic modulation in 2D TMD heterostructures and discuss some approaches to achieve novel functionalities. Then, we summarize the representative applications of 2D TMD heterostructures. Finally, we highlight the challenges and future perspectives in the synthesis and device fabrication of 2D TMD heterostructures and provide some feasible solutions.

3.
Nature ; 579(7799): 368-374, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32188941

RESUMO

Two-dimensional van der Waals heterostructures (vdWHs) have attracted considerable interest1-4. However, most vdWHs reported so far  are created by an arduous micromechanical exfoliation and manual restacking process5, which-although versatile for proof-of-concept demonstrations6-16 and fundamental studies17-30-is clearly not scalable for practical technologies. Here we report a general synthetic strategy for two-dimensional vdWH arrays between metallic transition-metal dichalcogenides (m-TMDs) and semiconducting TMDs (s-TMDs). By selectively patterning nucleation sites on monolayer or bilayer s-TMDs, we precisely control the nucleation and growth of diverse m-TMDs with designable periodic arrangements and tunable lateral dimensions at the predesignated spatial locations, producing a series of vdWH arrays, including VSe2/WSe2, NiTe2/WSe2, CoTe2/WSe2, NbTe2/WSe2, VS2/WSe2, VSe2/MoS2 and VSe2/WS2. Systematic scanning transmission electron microscopy studies reveal nearly ideal vdW interfaces with widely tunable moiré superlattices. With the atomically clean vdW interface, we further show that the m-TMDs function as highly reliable synthetic vdW contacts for the underlying WSe2 with excellent device performance and yield, delivering a high ON-current density of up to 900 microamperes per micrometre in bilayer WSe2 transistors. This general synthesis of diverse two-dimensional vdWH arrays provides a versatile material platform for exploring exotic physics and promises a scalable pathway to high-performance devices.

4.
Nano Lett ; 24(7): 2299-2307, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38334593

RESUMO

Organic-inorganic hybrid perovskites have attracted tremendous attention owing to their fascinating optoelectronic properties. However, their poor air stability seriously hinders practical applications, which becomes more serious with thickness down to the nanoscale. Here we report a one-step vapor phase growth of HC(NH2)2PbBr3 (FAPbBr3) single-crystalline nanosheets of tunable size up to 50 µm and thickness down to 20 nm. The FAPbBr3 nanosheets demonstrate high stability for over months of exposure to air with no degradation in surface roughness and photoluminescence efficiency. Besides, the FAPbBr3 photodetectors exhibit superior overall performance as compared to previous devices based on nonlayered perovskite nanosheets, such as an ultralow dark current of 24 pA, an ultrahigh responsivity of 1033 A/W, an external quantum efficiency over 3000%, a rapid response time around 25 ms, and a high on/off ratio of 104. This work provides a strategy to tackle the challenges of hybrid perovskites toward integrated optoelectronics with requirements of nanoscale thickness, high stability, and excellent performance.

5.
Small ; : e2404897, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39152939

RESUMO

The intrinsic low-symmetry crystal structures or external geometries of low-dimensional materials are crucial for polarization-sensitive photodetection. However, these inherently anisotropic materials are limited in variety, and their anisotropy is confined to specific crystal directions. Transforming 2D semiconductors, such as WSe2, from isotropic 2D nanosheets into anisotropic 1D nanoscrolls expands their application in polarization photodetection. Despite this considerable potential, research on polarization photodetection based on nanoscrolls remains scarce. Here, the uniform crystalline orientation of WSe2 nanoscrolls is achieved conveniently and efficiently by applying ethanol droplets to vapor deposition-grown bilayer WSe2 nanosheets. Angle-resolved polarized Raman spectroscopy of WSe2 nanoscrolls demonstrates vibrational anisotropy. Photodetectors based on these nanoscrolls show competitive overall performance with a broadband detection range from 405 to 808 nm, a competitive on/off ratio of ≈900, a high detectivity of 3.4 × 108 Jones, and a fast response speed of ≈30 ms. Additionally, WSe2 nanoscroll-based photodetectors exhibit strong polarization-sensitive detection with a maximum dichroic ratio of 1.5. More interestingly, due to high photosensitivity, the WSe2 nanoscroll detectors can easily record sequential puppy images. This work reveals the potential of WSe2 nanoscrolls as excellent polarization-sensitive photodetectors and provides new insights into the development of high-performance optoelectronic devices.

6.
Bioinformatics ; 39(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37261859

RESUMO

MOTIVATION: An imperative step in drug discovery is the prediction of drug-disease associations (DDAs), which tries to uncover potential therapeutic possibilities for already validated drugs. It is costly and time-consuming to predict DDAs using wet experiments. Graph Neural Networks as an emerging technique have shown superior capacity of dealing with DDA prediction. However, existing Graph Neural Networks-based DDA prediction methods suffer from sparse supervised signals. As graph contrastive learning has shined in mitigating sparse supervised signals, we seek to leverage graph contrastive learning to enhance the prediction of DDAs. Unfortunately, most conventional graph contrastive learning-based models corrupt the raw data graph to augment data, which are unsuitable for DDA prediction. Meanwhile, these methods could not model the interactions between nodes effectively, thereby reducing the accuracy of association predictions. RESULTS: A model is proposed to tap potential drug candidates for diseases, which is called Similarity Measures-based Graph Co-contrastive Learning (SMGCL). For learning embeddings from complicated network topologies, SMGCL includes three essential processes: (i) constructs three views based on similarities between drugs and diseases and DDA information; (ii) two graph encoders are performed over the three views, so as to model both local and global topologies simultaneously; and (iii) a graph co-contrastive learning method is introduced, which co-trains the representations of nodes to maximize the agreement between them, thus generating high-quality prediction results. Contrastive learning serves as an auxiliary task for improving DDA predictions. Evaluated by cross-validations, SMGCL achieves pleasing comprehensive performances. Further proof of the SMGCL's practicality is provided by case study of Alzheimer's disease. AVAILABILITY AND IMPLEMENTATION: https://github.com/Jcmorz/SMGCL.


Assuntos
Doença de Alzheimer , Humanos , Descoberta de Drogas , Redes Neurais de Computação , Projetos de Pesquisa
7.
J Chem Phys ; 161(2)2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-38984962

RESUMO

Two-dimensional (2D)/three-dimensional (3D) halide perovskite heterostructures have been extensively studied for their ability to combine the outstanding long-term stability of 2D perovskites with the superb optoelectronic properties of 3D perovskites. While current studies mostly focus on vertically stacked 2D/3D perovskite heterostructures, a theoretical understanding regarding the optoelectronic properties of 2D/3D perovskite lateral heterostructures is still lacking. Herein, we construct a series of 2D/3D perovskite lateral heterostructures to study their optoelectronic properties and interfacial charge transfer using density functional theory (DFT) calculations. We find that the band alignments of 2D/3D heterostructures can be regulated by varying the quantum-well thickness of 2D perovskites. Moreover, decreasing the 2D component ratio in 2D/3D heterostructures can be favorable to form type-I band alignment, whereas a large component ratio of 2D perovskites tends to form type-II band alignment. We can improve the amount of charge transfer at the 2D/3D perovskite interfaces and the light absorption of 2D perovskites by increasing quantum-well thickness. These present findings can provide a clear designing principle for achieving 3D/2D perovskite lateral heterostructures with tunable optoelectronic properties.

8.
Appl Opt ; 63(4): 888-894, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38437384

RESUMO

An electromagnetic wavefront can be flexibly manipulated by discrete phase coding on the coding unit. In this paper, we designed two coding metasurfaces with 1-bit and 3-bit based on active tuning of Dirac semimetals by controlling the Fermi level (E F) with an external polarization voltage. The size and structure of the metasurface remain unchanged with this strategy. Both designs were found to be dynamically tunable. The 1-bit coding metasurface enables beam conversion, single-focus switching, and switching between single-focus and multi-focus. On the other hand, the 3-bit coding metasurface enables the switching between vortex beams and single-beam mirror reflections. These proposed structures have potential applications in terahertz (THz) communications and terahertz-focused imaging, opening up new possibilities for the dynamic modulation of THz waves.

9.
Opt Express ; 31(12): 19159-19172, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37381339

RESUMO

The polarization topology around the bound states in continuum (BIC) affects the optical vortex (OV) beam generation. We propose a cross-cross-shaped resonator based on a THz metasurface to realize an OV beam generator in real space by exploiting the inherent winding topology around the BIC. The BIC merging at the point Γ is achieved by tuning the width of the cross resonator, which significantly improves the Q factor and enhances the field localization. Furthermore, the switching between the high-order OV beam generator governed by the merged BIC and the low-order OV beam generator is realized. This extends the application of BIC in modulating orbital angular momentum.

10.
Phys Chem Chem Phys ; 25(17): 12252-12258, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37078189

RESUMO

The terahertz (THz) region vibration spectral signatures of molecular crystals can usually be ascribed to the low-frequency vibrational modes related to weak intermolecular interactions, e.g. van der Waals (vdW) interactions or hydrogen bonding. These interactions collectively dictate the compositional units deviating from their equilibrium configurations. The collective movements are intrinsically long-range, and hence the boundary conditions used for theoretical calculation can affect the corresponding potential energy gradients and alter the vibrational features. In this work, we constructed a series of finite-sized cluster models with varying sizes and an extended periodic crystal model for L-ascorbic acid (L-AA) crystals. Density functionals with both semi-local contributions and nonlocal vdW terms, implemented with either atom-centered Gaussian basis or plane waves, were tested. By comparing first principles calculations with experimental time-domain spectra (TDS), we found that the non-local vdW functional opt-B88 combined with a periodic boundary condition is capable of assigning all the experimental features in the 0.2-1.6 THz region. Calculations with cluster models failed in this task. Even worse, the deficiency of the cluster models varied with cluster sizes, and did not converge as the cluster size grew. Our results demonstrate that an appropriate periodic boundary condition is essential to correctly assign and analyze the THz vibration spectra of molecular crystals.

11.
Nano Lett ; 22(10): 3961-3968, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35507685

RESUMO

Circularly polarized light (CPL) is essential for optoelectronic and chiro-spintronic applications. Hybrid perovskites, as star optoelectronic materials, have demonstrated CPL activity, which is, however, mostly limited to chiral perovskites. Here, we develop a simple, general, and efficient strategy to stimulate CPL activity in achiral perovskites, which possess rich species, efficient luminescence, and tunable bandgaps. With the formation of van der Waals heterojunctions between chiral and achiral perovskites, a nonequilibrium spin population and thus CPL activity are realized in achiral perovskites by receiving spin-polarized electrons from chiral perovskites. The polarization degree of room-temperature CPL in achiral perovskites is at least one order of magnitude higher than in chiral ones. The CPL polarization degree and emission wavelengths of achiral perovskites can be flexibly designed by tuning chemical compositions, operating temperature, or excitation wavelengths. We anticipate that unlimited types of achiral perovskites can be endowed with CPL activity, benefiting their applications in integrated CPL sources and detectors.

12.
Small ; 18(48): e2205227, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36285770

RESUMO

Ultrathin hybrid perovskites, with exotic properties and two-dimensional geometry, exhibit great potential in nanoscale optical and optoelectronic devices. However, it is still challenging for them to be compatible with high-resolution patterning technology toward miniaturization and integration applications, as they can be readily damaged by the organic solvents used in standard lithography processes. Here, a flexible three-step method is developed to make high-resolution multicolor patterning on hybrid perovskite, particularly achieved on a single nanosheet. The process includes first synthesis of precursor PbI2 , then e-beam lithography and final conversion to target perovskite. The patterns with linewidth around 150 nm can be achieved, which can be applied in miniature optoelectronic devices and high-resolution displays. As an example, the channel length of perovskite photodetectors can be down to 126 nm. Through deterministic vapor-phase anion exchange, a perovskite nanosheet can not only gradually alter the color of the same pattern in a wide wavelength range, but also display different colors simultaneously. The authors are optimistic that the method can be applied for unlimited perovskite types and device configurations for their high-integrated miniature applications.

13.
Nat Mater ; 20(6): 818-825, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33649563

RESUMO

The discovery of intrinsic ferromagnetism in ultrathin two-dimensional van der Waals crystals opens up exciting prospects for exploring magnetism in the ultimate two-dimensional limit. Here, we show that environmentally stable CrSe2 nanosheets can be readily grown on a dangling-bond-free WSe2 substrate with systematically tunable thickness down to the monolayer limit. These CrSe2/WSe2 heterostructures display high-quality van der Waals interfaces with well-resolved moiré superlattices and ferromagnetic behaviour. We find no apparent change in surface roughness or magnetic properties after months of exposure in air. Our calculations suggest that charge transfer from the WSe2 substrate and interlayer coupling within CrSe2 play a critical role in the magnetic order in few-layer CrSe2 nanosheets. The highly controllable growth of environmentally stable CrSe2 nanosheets with tunable thickness defines a robust two-dimensional magnet for fundamental studies and potential applications in magnetoelectronic and spintronic devices.

14.
New Phytol ; 233(5): 2216-2231, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34942029

RESUMO

Anthocyanins are a subgroup of plant flavonoids with antioxidant activities and are often induced by various biotic and abiotic stresses in plants, probably to efficiently scavenge free radicals and reactive oxygen species. However, the regulatory mechanisms of salt stress-induced anthocyanin biosynthesis remain unclear. Using molecular and genetic techniques we demonstrated key roles of ECAP in differential salt-responsive anthocyanin biosynthesis pathways in Arabidopsis thaliana. ECAP, JAZ6/8 and TPR2 are known to form a transcriptional repressor complex, and negatively regulate jasmonate (JA)-responsive anthocyanin accumulation. In this study, we demonstrated that under moderate salt stress, the accumulation of anthocyanins is partially dependent on JA signaling, which degrades JAZ proteins but not ECAP. More interestingly, we found that high salinity rather than moderate salinity induces the degradation of ECAP through the 26S proteasome pathway, and this process is independent of JA signaling. Further analysis revealed that ECAP interacts with MYB75 (a transcription factor activating anthocyanin biosynthetic genes) and represses its transcriptional activity in the absence of high salinity. Our results indicated that plants adopt different strategies for fine-tuning anthocyanin accumulation under different levels of salt stress, and further elucidated the complex regulation of anthocyanin biosynthesis during plant development and responses to environmental stresses.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Antocianinas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Salino , Fatores de Transcrição/metabolismo
15.
Appl Intell (Dordr) ; : 1-21, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36531970

RESUMO

To solve the information overload issue and enhance the user experience of various web applications, recommender systems aim to better model user interests and preferences. Knowledge Graphs (KGs), consisting of real-world objective facts and fruitful entities, play a vital role in recommender systems. Recently, a technological trend has been to develop end-to-end Graph Neural Networks (GNNs)-based knowledge-aware recommendation (a.k.a., Knowledge Graph Recommendation, KGR) models. Unfortunately, current GNNs-based KGR approaches focus on how to capture high-order feature information on KGs while neglecting the following two crucial limitations: 1) The explicitly high-order feature interaction and fusion mechanism and 2) The valid user intent modelling mechanism. As such, these issues lead to insufficient user/item representation learning capability and unsatisfactory KGR performance. In this work, we present a novel Knowledge-enhanced Re commendation with F eature I nteraction and Intent-aware Attention Networks (FIRE) to address the latent intent modelling and high-order feature interaction deficiencies ignored by existing KGR methods. Based on the prototype user/item representation learning leveraging the GNNs-based approach, our model offers the following major improvements: One is the innovative use of Convolutional Neural Networks (CNNs) that perform vertical convolutional (a.k.a., bit-level convolutional) and horizontal convolutional (a.k.a., vector-level convolutional) processes to model multi-granular high-order feature interactions to enhance item-side representation learning. Another is to model users' latent intent factors by utilizing a two-level attention mechanism (i.e., node- and intent-level attention mechanism) to enhance user-side representation learning. Extensive experiments on three KGs domain public datasets demonstrate that our method outperforms the existing state-of-the-art baseline. Last but not least, numerous ablation- and model studies demystify the working mechanism and elucidate the plausibility of the proposed model.

16.
J Lipid Res ; 60(1): 121-134, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30482807

RESUMO

In this study, a novel strategy based on acetone stable-isotope derivatization coupled with HPLC-MS for profiling and accurate quantification of aminophospholipids (phosphatidylethanolamine and phosphatidylserine) in biological samples was developed. Acetone derivatization leads to alkylation of the primary amino groups of aminophospholipids with an isopropyl moiety; the use of deuterium-labeled acetone (d6-acetone) introduced a 6 Da mass shift that was ideally suited for profiling and quantification analysis with high selectivity and accuracy. After derivatization, significantly increased column efficiency for chromatographic separation and detection sensitivity for MS analysis of aminophospholipids was observed. Furthermore, an accuracy quantification method was developed. Aminophospholipids in biological samples were derivatized with d0-acetone; while more than two aminophospholipid standards were selected for each class of aminophospholipid and derivatized with d6-acetone, which were then used as the internal standards to typically construct a calibration curve for each class to normalize the nonuniformity response caused by the differential fragmentation kinetics resulting from the distinct chemical constitution of individual aminophospholipid species in the biological samples. The excellent applicability of the developed method was validated by profiling and quantification of aminophospholipids presented in liver samples from rats fed with different diets.


Assuntos
Métodos Analíticos de Preparação de Amostras/métodos , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Fosfolipídeos/análise , Fosfolipídeos/química , Acetona/química , Animais , Limite de Detecção , Fígado/química , Masculino , Fosfolipídeos/isolamento & purificação , Ratos , Ratos Sprague-Dawley
17.
J Cell Mol Med ; 23(9): 6393-6402, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31278860

RESUMO

OBJECTIVE: Qishen Yiqi Drop Pill (QSYQ) has been recognized as a potential protective agent for various cardiovascular diseases. However, the effect of QSYQ in cardiac complications associated with diabetes is not clear currently. In this study, we investigate whether QSYQ could exert cardiac protective effects against high glucose-induced injuries in cardiac H9c2 cells. METHODS: H9c2 cells were exposed to 24 hours of high glucose in presence or absence of QSYQ and LY294002. Cell cytotoxicity, apoptosis, reactive oxygen species (ROS) generation, mitochondrial membrane potential and mitochondrial permeability transition pore (mPTP) opening were determined. Levels of bax, bcl-2, p53, cleaved caspase-3, PI3K and Akt were evaluated by Western blot. RESULTS: Our data indicated that QSYQ significantly increased the cell viability and decreased cytotoxicity. By analysing the apoptotic rate as well as the expression levels of cytoapoptosis-related factors including cleaved caspase-3, bax, bcl-2, and p53, we found that QSYQ could remarkably suppress apoptosis of cardiomyoblasts caused by high glucose. In addition, it also showed that QSYQ reduced the generation of ROS. We further found that QSYQ treatment could inhibit the loss of mitochondrial membrane potential and mPTP opening. Moreover, Western blot analysis showed enhanced phosphorylation of PI3K/Akt. The specific inhibitor of PI3K, LY294002 not only inhibited QSYQ induced PI3K/Akt signalling pathway activation, but alleviated its protective effects. CONCLUSIONS: In summary, these findings demonstrated that QSYQ effectively protected H9c2 cells against the series injuries due to high glucose at least partially by activating the PI3K/Akt signalling pathway.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Glucose/efeitos adversos , Miócitos Cardíacos/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Medicina Tradicional Chinesa/métodos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/efeitos dos fármacos , Poro de Transição de Permeabilidade Mitocondrial , Miócitos Cardíacos/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo
18.
J Cell Biochem ; 120(6): 10748-10755, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30719766

RESUMO

The clinical use of doxorubicin (DOX) is limited by its toxic effect. However, there is no specific drug that can prevent DOX-related cardiac injury. C1qTNF-related protein-6 (CTRP6) is a newly identified adiponectin paralog with many protective functions on metabolism and cardiovascular diseases. However, little is known about the effect of CTRP6 on DOX-induced cardiac injury. The present study aimed to investigate whether CTRP6 could protect against DOX-related cardiotoxicity. To induce acute cardiotoxicity, the mice were intraperitoneally injected with a single dose of DOX (15 mg/kg). Cardiomyocyte-specific CTRP6 overexpression was achieved using an adenoassociated virus system at 4 weeks before DOX injection. The data in our study demonstrated that CTRP6 messenger RNA and protein expression were decreased in DOX-treated hearts. CTRP6 attenuated cardiac atrophy induced by DOX injection and inhibited cardiac apoptosis and improved cardiac function in vivo. CTRP6 also promoted the activation of protein kinase B (AKT/PKB) signaling pathway in DOX-treated mice. CTRP6 prevented cardiomyocytes from DOX-induced apoptosis and activated the AKT pathway in vitro. CTRP6 lost its protection against DOX-induced cardiac injury in mice with AKT inhibition. In conclusion, CTRP6 protected the heart from DOX-cardiotoxicity and improves cardiac function via activation of the AKT signaling pathway.


Assuntos
Adipocinas/genética , Cardiotoxicidade/genética , Doxorrubicina/toxicidade , Traumatismos Cardíacos/genética , Miócitos Cardíacos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/genética , Adipocinas/metabolismo , Animais , Cardiotoxicidade/etiologia , Cardiotoxicidade/fisiopatologia , Cardiotoxicidade/prevenção & controle , Linhagem Celular , Cromonas/farmacologia , Dependovirus/genética , Dependovirus/metabolismo , Regulação da Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Testes de Função Cardíaca , Traumatismos Cardíacos/induzido quimicamente , Traumatismos Cardíacos/fisiopatologia , Traumatismos Cardíacos/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Morfolinas/farmacologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais
19.
Mikrochim Acta ; 186(8): 537, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31317277

RESUMO

A capillary monolith consisting of poly[N-(4-vinyl)-benzyl iminodiacetic acid-co-divinylbenzene-co-N,N'-methylene bisacrylamide), referred to as poly(VBIDA-DVB-Bis), has been prepared. It is shown to be an efficient sorbent for the enrichment of Co(II) and Cd(II). The two ions are completely retained by the monolith in the pH range from 4.0 to 9.0. The breakthrough curve tests were adopted to evaluate the adsorption performance of the monolith towards Co(II) and Cd(II). A dose-response model was used to describe the breakthrough curves of the two ions at different initial concentrations. The adsorption capacities for Co(II) and Cd(II) are 1.54 and 1.73 mg·m-1 at a concentration level of 2.5 mg·L-1, respectively. The enrichment factor is 100, and the required sample volume is 5 mL. Following elution of the two ions with 0.5 M HNO3, they were quantified by ICP-MS. The limits of detection in a 1 mL sample are 0.35 ng·L-1 for Co(II) and 0.44 ng·L-1 for Cd(II). The method was applied to the determination of Co(II) and Cd(II) in spiked rice, human urine and seawater samples. Graphical abstract Schematic representation of a monolithic copolymer prepared from N-(4-vinyl)-benzyl iminodiacetic acid (VBIDA), divinylbenzene (DVB) and N,N'-methylene bisacrylamide (Bis) and its application for selective capturing of cadmium(II) and cobalt(II) from complex sample matrices prior to their determination by ICP-MS.


Assuntos
Acrilamidas/química , Cádmio/análise , Cobalto/análise , Iminoácidos/química , Polímeros/química , Compostos de Vinila/química , Adsorção , Cádmio/química , Cádmio/urina , Cobalto/química , Cobalto/urina , Humanos , Espectrometria de Massas , Oryza/química , Água do Mar/análise
20.
Nano Lett ; 18(6): 3523-3529, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29786447

RESUMO

The recent discovery of topological semimetals has stimulated extensive research interest due to their unique electronic properties and novel transport properties related to a chiral anomaly. However, the studies to date are largely limited to bulk crystals and exfoliated flakes. Here, we report the controllable synthesis of ultrathin two-dimensional (2D) platinum telluride (PtTe2) nanosheets with tunable thickness and investigate the thickness-dependent electronic properties. We show that PtTe2 nanosheets can be readily grown, using a chemical vapor deposition approach, with a hexagonal or triangular geometry and a lateral dimension of up to 80 µm, and the thickness of the nanosheets can be systematically tailored from over 20 to 1.8 nm by reducing the growth temperature or increasing the flow rate of the carrier gas. X-ray-diffraction, transmission-electron microscopy, and electron-diffraction studies confirm that the resulting 2D nanosheets are high-quality single crystals. Raman spectroscopic studies show characteristics Eg and A1g vibration modes at ∼109 and ∼155 cm-1, with a systematic red shift with increasing nanosheet thickness. Electrical transport studies show the 2D PtTe2 nanosheets display an excellent conductivity up to 2.5 × 106 S m-1 and show strong thickness-tunable electrical properties, with both the conductivity and its temperature dependence varying considerably with the thickness. Moreover, 2D PtTe2 nanosheets show an extraordinary breakdown current density up to 5.7 × 107 A/cm2, the highest breakdown current density achieved in 2D metallic transition-metal dichalcogenides to date.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA