Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 44(8): 3291-3311, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35892713

RESUMO

Naphthylacetic acid (NAA) was used to increase the tuberous root yield of Rehmannia glutinosa, but the differences between its NAA-treated and control tuberous roots (NT and CG) and the regulatory mechanism of NAA effect remain unclear. In order to investigate them, NTs and CGs were used as materials, and both yield-related indices were measured; the metabolomics and transcriptomics were used to capture differentially accumulated metabolites (DAM) and to validate them via mining differentially expressed genes (DEGs), respectively. The effects of NAA treatment: increased NT mass per plant by 21.14%, through increasing the number of roots and increasing the mean root diameter; increased catalpol content by 1.2234% (p < 0.05); up-regulated 11DAMs and 596DEGs; and down-regulated 18 DAMs and 517DEGs. In particular, we discovered that NAA regulated its DAMs and biomass via 10 common metabolic pathways, and that the number of NAA-down-regulated DAMs was more than that of NAA-up-regulated DAMs in its tuberous root. Furthermore, HPLC validated the changes of several DAMs and 15 DEGs (4CL, ARF, CCoAOMT, ARGOS, etc.) associated with the yield increase and DAMs were verified by RT-qPCR. This study provided some valuable resources, such as tuberous root indices, key genes, and DAMs of Rehmannia glutinosa in response to NAA for distinguishing the CGs from NTs, and novel insights into the regulatory mechanism of NAA effects on both at the transcriptomic and metabolomic levels, so it will lay a theoretical foundation for NAA-regulated plant yield and quality, and provide references for prohibiting the uses of NAA as a swelling agent in medicinal tuber plants in China.

2.
Zhongguo Zhong Yao Za Zhi ; 43(16): 3249-3254, 2018 Aug.
Artigo em Zh | MEDLINE | ID: mdl-30200726

RESUMO

To study morphological characteristics change of the development process and quercetin and polyphenols of accumulation dynamic of the spines of Gleditsia sinensis, measure and compare morphological indexes using Vernier caliper, ruler and balance, calibrate and analysis quercetin and polyphenols content using HPLC and colorimetric method. The spines of G. sinensis development process is divided into formation period (the beginning of August to the beginning of November), dormant period (the beginning of November to the end of March in the following year), germination period (the end of March to the middle of April), fast growth period (the middle of April to the middle of August), browning period (the middle of August to the end of August) and mature period (the beginning of September to the end of December). Formation period the spines primordium divides and forms the scale bubs; dormant period the scale bubs are in a dormant state; germination period the bubs scales fall off, spines primordium began to development; fast growth period rapid growth to maximum; browning period browning from the tip and browns until the whole becomes brown; mature period The early stage of maturity is full of luster, gradually the color deepened and the luster faded. The accumulation of quercetin was gradually decreasing after increasing. The total polyphenol accumulation was significantly decreased and then gradually increased, decreased finally. The content of quercetin was increased from 0.000 4%-0.002 6%, and the polyphenol content decreased from 0.761 9%-0.049 1% and then slowly increased to 0.286 9% in the fast growth period.The quercetin continuous increase to 0.004 3% and total polyphenol increased to 0.421 6% in the browning period. In the mature period, the quercetin content significantly decreased after reaching 0.009 6% in September, and the polyphenols content decreased after reaching 0.723 5% in October. Using principal component analysis results: September first, October 2nd, November 3rd. The morphological characteristics change of the development process and quercetin and polyphenols accumulation were determined. The development process is divided into six periods, the best harvest time is the early stage of mature period. Provide theoretical support for the utilization of the spines of G. sinensis and cultivation techniques of high yield.


Assuntos
Gleditsia/química , Polifenóis/análise , Quercetina/análise , Gleditsia/crescimento & desenvolvimento , Compostos Fitoquímicos/análise , Plantas Medicinais/química , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA