Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(12): 8590-8598, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35647805

RESUMO

Removal of chromate (CrO42-) and pertechnetate (TcO4-) from the Hanford Low Activity Waste (LAW) is beneficial as it impacts the cost, life cycle, operational complexity of the Waste Treatment and Immobilization Plant (WTP), and integrity of vitrified glass for nuclear waste disposal. Here, we report the application of [MoIV3S13]2- intercalated layer double hydroxides (LDH-Mo3S13) for the removal of CrO42- as a surrogate for TcO4-, from ppm to ppb levels from water and a simulated LAW off-gas condensate of Hanford's WTP. LDH-Mo3S13 removes CrO42- from the LAW condensate stream, having a pH of 7.5, from ppm (∼9.086 × 104 ppb of Cr6+) to below 1 ppb levels with distribution constant (Kd) values of up to ∼107 mL/g. Analysis of postadsorbed solids indicates that CrO42- removal mainly proceeds by reduction of Cr6+ to Cr3+. This study sets the first example of a metal sulfide intercalated LDH for the removal of CrO42-, as relevant to TcO4-, from the simulated off-gas condensate streams of Hanford's LAW melter which contains highly concentrated competitive anions, namely F-, Cl-, CO32-, NO3-, BO33-, NO2-, SO42-, and B4O72-. LDH-Mo3S13's remarkable removal efficiency makes it a promising sorbent to remediate CrO42-/TcO4- from surface water and an off-gas condensate of nuclear waste.


Assuntos
Resíduos Radioativos , Cromatos , Hidróxidos , Água
2.
Angew Chem Int Ed Engl ; 61(1): e202112511, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34709699

RESUMO

We demonstrate a new material by intercalating Mo3 S13 2- into Mg/Al layered double hydroxide (abbr. Mo3 S13 -LDH), exhibiting excellent capture capability for toxic Hg2+ and noble metal silver (Ag). The as-prepared Mo3 S13 -LDH displays ultra-high selectivity of Ag+ , Hg2+ and Cu2+ in the presence of various competitive ions, with the order of Ag+ >Hg2+ >Cu2+ >Pb2+ ≥Co2+ , Ni2+ , Zn2+ , Cd2+ . For Ag+ and Hg2+ , extremely fast adsorption rates (≈90 % within 10 min, >99 % in 1 h) are observed. Much high selectivity is present for Ag+ and Cu2+ , especially for trace amounts of Ag+ (≈1 ppm), achieving a large separation factor (SFAg/Cu ) of ≈8000 at the large Cu/Ag ratio of 520. The overwhelming adsorption capacities for Ag+ (qm Ag =1073 mg g-1 ) and Hg2+ (qm Hg =594 mg g-1 ) place the Mo3 S13 -LDH at the top of performing sorbent materials. Most importantly, Mo3 S13 -LDH captures Ag+ via two paths: a) formation of Ag2 S due to Ag-S complexation and precipitation, and b) reduction of Ag+ to metallic silver (Ag0 ). The Mo3 S13 -LDH is a promising material to extract low-grade silver from copper-rich minerals and trap highly toxic Hg2+ from polluted water.

3.
J Am Chem Soc ; 142(3): 1574-1583, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31855420

RESUMO

The new material Polypyrrole-Mo3S13 (abbr. Mo3S13-Ppy) is a new material prepared by ion-exchange between Ppy-NO3 and (NH4)2Mo3S13. The Mo3S13-Ppy was designed to exhibit strong selectivity for Ag+ and highly toxic Hg2+ in mixtures with other ions. It displays an apparent selectivity ranking of Hg2+ > Ag+ ≥ Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Pb2+. The strong affinity of Mo3S13-Ppy for Ag+ and Hg2+ was confirmed with extremely high distribution coefficients (Kd) (∼107 mL/g) and remarkable removal efficiencies (>99.99%), resulting in <1 ppb concentrations of these ions. Furthermore, Mo3S13-Ppy achieved excellent separation selectivity for Ag+ from Cu2+ (even at a high Cu2+/Ag+ ratio, the molar ratio of 867 and mass ratio of 500) because of the special structure of Mo3S132- and its component Mo4+ and (S2)2-. This is promising for the direct extraction of low-grade silver from copper-rich minerals. The maximum Ag uptake capacity of 408 mg/g is redox-based and surprisingly involves the deposition of large, millimeter sized, metallic silver (Ag0) crystals on the surface of Mo3S13-Ppy.

4.
Nanotechnology ; 31(3): 035403, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31557753

RESUMO

The development of low-cost electrocatalysts with high performance is important to provide sustainable hydrogen energy. In this work, via one-step sulfuration of [Formula: see text] intercalated NiFe-layered double hydroxide (abbr. NiFe-MoO4-LDH), hierarchical microspheres are assembled by intersecting nanoplates (15-30 nm in thickness) which are then decorated with MoS2 and (NiFe)S x nanoparticles (∼25 nm in size). The NiFe-MoO4-LDH is synthesized beforehand by a one-pot hydrothermal reaction. Under sulfuration at 300 °C, 400 °C and 600 °C, the NiFe-MoO4-LDH transforms into multi-metal sulfides of NiFeMoS-T (T is applied temperature). During sulfuration, the confinement effect of LDH limits the growth of metal sulfides, causing formation of nanoparticles of MoS2 and (NiFe)S x to expose more catalytic active sites. In an alkaline medium, NiFeMoS-400 depicts superior performance for hydrogen evolution reaction (HER), giving an overpotential of 210 mV at 10 mA cm-2. A Tafel slope of 88 mV dec-1 indicates a mixed Volmer-Heyrovsky rate-determining step. The electrode also maintains long-term electrochemical durability during 15 h electrolysis at 25 mA cm-2. The NiFe-MoO4-LDH precursor owns three metal elements (Ni, Fe and Mo), which ensure the formation of polymetallic sulfides, and maximum utilization of the LDH layer and interlayer metals contributes to the optimal electrocatalytic activity. The NiFeMoS nanoassembly is a potential low-cost and high-efficiency electrocatalyst.

5.
BMC Med Educ ; 20(1): 24, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992284

RESUMO

BACKGROUND: The aims of this study were to examine the factor structure of the Chinese version of the Jefferson Scale of Empathy for medical students (JSE-S) and investigate differences in empathy scores among Chinese medical students according to gender, student cadre or not, future career preference, and parents' education. METHODS: Medical students from three universities completed an online questionnaire containing the JSE-S. Exploratory factor analysis was conducted to determine the factor structure, and group comparisons of empathy scores were examined via t-tests and analysis of variance. RESULTS: Four factors emerged from the factor analysis: "perspective taking," "compassionate care," "standing in the patient's shoes," and an uninterpretable factor. The results indicated that students who were female, held positions as student cadres, preferred to become a doctor, and whose fathers had a high school education or below tended to have more empathy. CONCLUSIONS: Overall, the findings provide information on the dimensions of empathy applicable to Chinese medical students and confirm the factors found in the original measure. The dimensions have implications for developing empathy among medical students throughout the world. Educators can use the information to design interventions to foster empathy among students in the context of medical education reform in many countries, including China.


Assuntos
Escolha da Profissão , Escolaridade , Empatia , Pai/educação , Estudantes de Medicina/psicologia , Adulto , Análise de Variância , China , Estudos Transversais , Educação de Graduação em Medicina , Análise Fatorial , Feminino , Humanos , Masculino , Fatores Sexuais , Estudantes de Medicina/estatística & dados numéricos , Adulto Jovem
6.
J Am Chem Soc ; 141(26): 10417-10430, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31244177

RESUMO

The design of low-cost yet high-efficiency electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) over a wide pH range is highly challenging. We now report a hierarchical co-assembly of interacting MoS2 and Co9S8 nanosheets attached on Ni3S2 nanorod arrays which are supported on nickel foam (NF). This tiered structure endows high performance toward HER and OER over a very broad pH range. By adjusting the molar ratio of the Co:Mo precursors, we have created CoMoNiS-NF- xy composites ( x: y means Co:Mo molar ratios ranging from 5:1 to 1:3) with controllable morphology and composition. The three-dimensional composites have an abundance of active sites capable of universal pH catalytic HER and OER activity. The CoMoNiS-NF-31 demonstrates the best electrocatalytic activity, giving ultralow overpotentials (113, 103, and 117 mV for HER and 166, 228, and 405 mV for OER) to achieve a current density of 10 mA cm-2 in alkaline, acidic, and neutral electrolytes, respectively. It also shows a remarkable balance between electrocatalytic activity and stability. Based on the distinguished catalytic performance of CoMoNiS-NF-31 toward HER and OER, we demonstrate a two-electrode electrolyzer performing water electrolysis over a wide pH range, with low cell voltages of 1.54, 1.45, and 1.80 V at 10 mA cm-2 in alkaline, acidic, and neutral media, respectively. First-principles calculations suggest that the high OER activity arises from electron transfer from Co9S8 to MoS2 at the interface, which alters the binding energies of adsorbed species and decreases overpotentials. Our results demonstrate that hierarchical metal sulfides can serve as highly efficient all-pH (pH = 0-14) electrocatalysts for overall water splitting.

7.
Inorg Chem ; 58(22): 15602-15609, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31652051

RESUMO

Low-dimensional organic-inorganic hybrid metal halides have emerged as broadband light emitters for phosphor-converted white light-emitting diodes (WLEDs). Herein, we report a new zero-dimensional (0-D) lead-free metal halide (PMA)3InBr6 [PMA+: (C6H5CH2NH3)+] that crystallizes in the monoclinic system with P21/c space group. The structure consists of slightly distorted [InBr6]3- octahedra surrounded by organic PMA+ cations. The direct band gap characteristic of (PMA)3InBr6 was demonstrated by density functional theory calculation, and its relatively wide band gap of 3.78 eV was experimentally determined. Upon 365 nm ultraviolet light excitation, (PMA)3InBr6 exhibited strong broadband orange luminescence with a full-width at half-maximum of ∼132 nm resulting from self-trapped exciton emission, and the photoluminescence quantum yield was determined to be ∼35%. A WLED fabricated by combining the orange-emitting (PMA)3InBr6, a green phosphor Ba2SiO4:Eu2+, and a blue phosphor BaMgAl10O17:Eu2+ exhibited a high color-rendering index of 87.0. Our findings indicate that the organic-inorganic hybrid (PMA)3InBr6 may have potential for luminescence-based applications.

8.
Inorg Chem ; 58(17): 11449-11457, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31397562

RESUMO

MOFs present potential application in electrocatalysis. The structure-activity of the Ni-MOFs with different morphologies, nanowires, neurons, and urchins is systemically investigated. The Ni-MOFs were controllably synthesized via the facile solvothermal method. Among them, the Ni-MOF nanowires are endowed with the highest electrocatalytic activity due to the unique structure, more exposed active sites, lower charge transfer resistance, and the fast and direct electron transfer in 1D structures. The typical morphology of the Ni-MOF nanowires is ca. 10 nm in diameter and several micrometers in length. When employed as an electrocatalyst in urea oxidation reaction, it exhibits a lower overpotential than and superior stability to the Ni-MOFs with other morphologies. Ni-MOF nanowires require a potential of ∼0.80 V (vs Ag/AgCl) to obtain 160 mA cm-2. In addition, after continuous electrocatalyzing for 3600 s at 0.40 V (vs Ag/AgCl), the current density retention of Ni-MOF nanowires could still reach more than 60% (>12 mA cm-2), which demonstrates Ni-MOF nanowires as promising electrocatalysts for urea oxidation.

9.
Inorg Chem ; 58(6): 4014-4018, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30843395

RESUMO

The development of novel and highly efficient bifunctional electrocatalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is an ongoing challenge. The Cr3+ cation has a special electronic configuration (t32ge0g), which facilitates charge transfer and electron capture. However, Cr-based materials applied on water-splitting electrocatalysis is still a research void up to now. Herein, a novel amorphous γ-CrOOH was developed as a bifunctional electrocatalyst toward overall water splitting for the first time. It shows extraordinary HER activity with an ultralow overpotential of only 149 mV at 50 mA cm-2. Meantime, there is a small overpotential of 334 mV at 50 mA cm-2 for the OER. Importantly, the bifunctional electrocatalyst for overall water-splitting electrocatalysis can work with a cell voltage of merely 1.56 V at 10 mA cm-2. Amorphous γ-CrOOH has effectively enhanced the intrinsic electrochemical activity via density functional theoretical calculations. Therefore, this work not only provides a new method for preparation of amorphous γ-CrOOH but also expands the types of catalysts for water splitting.

10.
Inorg Chem ; 58(8): 4979-4988, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30933488

RESUMO

Tunable luminescence (quenching or blue shift) of HNA/OS-LRH composites (HNA is 3-hydroxy-2-naphthoic acid; OS is the anionic surfactant of 1-octanesulfonic acid sodium; LRHs are layered rare-earth hydroxides, R = Tb3+, Y3+) in the solid state and delaminated state is reported, which is utilized as an effective fluorescent probe for detecting metal ions. HNA/OS species are intercalated into LRH layers to generate composites of HNA xOS1- x-LTbH ( x = 0.10, 0.15, 0.20 , 0.25) and HNA yOS1- y-LYH ( y = 0.05, 0.10, 0.15, 0.20, 0.25, 0.30). In the solid state, LYH composites exhibit green emissions (from 493 to 504 nm) with a large blue shift in comparison to the 542 nm emission of free HNA- anions, while in the delaminated state in formamide (FM), the composites display blue emission (480 nm) relative to the green emission (512 nm) of an HNA soltuion in FM. However, LTbH composites display coquenched luminescence in both the solid state and delaminated state. Also, HNA0.25OS0.75-1:1-LYH, HNA0.25OS0.75-1:2-LYH, and HNA0.05OS0.95-1:1-LYH (1:1 and 1:2 are HNA:NaOH molar ratios) show significantly elongated fluorescence lifetimes of 15.35, 14.37, and 12.72 ns, respectively, in comparison with free HNA-Na (6.44 ns), and their quantum yields of 23.40%, 21.97%, and 22.31%, respectively, are much larger than that of free HNA-Na (4.86%). The LTbH composite (HNA0.25OS0.75-1:1-LTbH) has also a relatively higher quantum yield of 12.46%. The HNA0.25OS0.75-1:1-LYH colloid exhibits excellent recognition selectivity for Al3+ over other metal ions (Mg2+, Co2+, Ni2+, Cu2+, Zn2+, Pb2+, Cd2+, and Hg2+) with distinct fluorescence sensitization. It shows an intense change in its fluorescence emission when it is bound to Al3+ ions, giving a lower detection limit of 6.32 × 10-6 M. This is novel research on the fluorescence chemosensing of LRH composites.

11.
Inorg Chem ; 57(15): 9403-9411, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30009600

RESUMO

Two new layered compounds Rb2ZnBi2Se5 and Cs6Cd2Bi8Te17 are described. Rb2ZnBi2Se5 crystallizes in the orthorhombic space group Pnma, with lattice parameters of a = 15.6509(17) Å, b = 4.218(8) Å, and c = 18.653(3) Å. Cs6Cd2Bi8Te17 crystallizes in the monoclinic C2/ m space group, with a = 28.646(6) Å, b = 4.4634(9) Å, c = 21.164(4) Å, and ß = 107.65(3)°. The two structures are different and composed of anionic layers which are formed by inter connecting of BiQ6 octahedra (Q = Se or Te) and MQ4 (M = Zn or Cd) tetrahedra. The space between the layers hosts alkali metal as counter cations. The rubidium atoms of Rb2ZnBi2Se5 structure can be exchanged with other cations (Cd2+, Pb2+ and Zn2+) in aqueous solutions forming new phases. Rb2ZnBi2Se5 is an n-type semiconductor and exhibits an indirect band gap energy of 1.0 eV. Rb2ZnBi2Se5 is a congruently melting compound (mp ∼644 °C). The thermal conductivity of this semiconductor is very low with 0.38 W·m-1·K-1 at 873 K. Density functional theory (DFT) calculations suggest that the low lattice thermal conductivity of Rb2ZnBi2Se5 is attributed to heavy Bi atom induced slow phonon velocities and large Gruneisen parameters especially in the a and c directions. The thermoelectric properties of Rb2ZnBi2Se5 were characterized with the highest ZT value of ∼0.25 at 839 K.

12.
Nanotechnology ; 29(21): 215602, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29515020

RESUMO

A simple, highly efficient, and eco-friendly method is prepared to divide bulk boron nitride (BN) into boron nitride nanosheets (BNNSs). Due to the anisotropy of the hexagonal BN expansion coefficient, bulk BN is exfoliated utilizing the rapid and tremendous change in temperature, the extreme gasification of water, and ice thermal expansion pressure under freeze drying. The thickness of most of the BNNSs was less than ∼3 nm with a yield of 12-16 wt%. The as-obtained BNNS/polyacrylamide (PAAm) composite hydrogels exhibited outstanding mechanical properties. The tensile strength is fives times the bulk of the BN/PAAm composite hydrogels and the elongations are more than nine-fold the bulk of the BN/PAAm composite hydrogels. The BNNS/PAAm nanocomposite hydrogels also exhibited excellent elastic recovery, and the hysteresis of the BNNS nanocomposite hydrogels was negligible even after 30 cycles with a maximum tensile strain (ε max) of 700%. This work provides new insight into the fabrication of BN/polymer nanocomposites utilizing the excellent mechanical properties and transparency of BN. The results confirm that a few layers of BNNSs can also efficiently and directly improve the mechanical properties of composite polymer due to its stronger surface free energy and better wettability.

13.
BMC Med Educ ; 18(1): 241, 2018 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-30348197

RESUMO

BACKGROUD: To examine the psychometric properties of a Chinese translation of the Jefferson Scale of Empathy (Student-version, JSE-S), and to study differences in empathy scores among eight-year undergraduate medical students across gender, year of study, and future career preference. METHODS: The JSE-S was administered to 442 participants from December 2016 to July 2017, who were all first- to seventh-year students on an eight-year medical education course at Fudan University. Factor analysis was used to examine the underlying components of the Chinese version of the JSE-S. The data analyses comprised a t-test and analyses of variance. RESULTS: Factor analysis confirmed four components: perspective taking, compassionate care, ability to stand in patient's shoes, and difficulties in adopting patient's perspective. The lowest empathy score was found in the seventh-year students (99.5), while a decline was found across school years. Students in clinical training (sixth/seventh year) had lower empathy than students in premedical study (first/second year), basic medicine (third/fourth year), and clinical medicine (fifth year). Statistically significant differences in empathy mean scores were found in respect of future career preference but not gender. Students who preferred not to become doctors had lower empathy than students who preferred to become doctors, who were undecided, and who did not specify. CONCLUSIONS: The findings support the construct validity and reliability of the Chinese version of the JSE-S for medical students. The study also revealed the features of empathy in eight-year program students, and provided a reliable reference to design interventions to cultivate empathy among Chinese medical students.


Assuntos
Escolha da Profissão , Empatia , Estudantes de Medicina/psicologia , Análise de Variância , China , Estudos Transversais , Educação de Graduação em Medicina , Análise Fatorial , Humanos , Medicina , Relações Médico-Paciente , Psicometria , Reprodutibilidade dos Testes , Autorrelato
14.
J Am Chem Soc ; 139(36): 12745-12757, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28782951

RESUMO

We demonstrate fast, highly efficient concurrent removal of toxic oxoanions of Se(VI) (SeO42-) and Se(IV) (SeO32-/HSeO3-) and heavy metal ions of Hg2+, Cu2+, and Cd2+ by the MoS42- intercalated Mg/Al layered double hydroxide (MgAl-MoS4-LDH, abbr. MoS4-LDH). Using the MoS4-LDH as a sorbent, we observe that the presence of Hg2+ ions greatly promotes the capture of SeO42-, while the three metal ions (Hg2+, Cu2+, Cd2+) enable a remarkable improvement in the removal of SeO32-/HSeO3-. For the pair Se(VI)+Hg2+, the MoS4-LDH exhibits outstanding removal rates (>99.9%) for both Hg2+ and Se(VI), compared to 81% removal for SeO42- alone. For individual SeO32- (without metal ions), 99.1% Se(IV) removal is achieved, while ≥99.9% removals are reached in the presence of Hg2+, Cu2+, and Cd2+. Simultaneously, the removal rates for these metal ions are also >99.9%, and nearly all concentrations of the elements can be reduced to <10 ppb, a limit acceptable for drinking water. The maximum sorption capacities for individual Se(VI) and Se(IV) are 85 and 294 mg/g, respectively. The 294 mg/g capacity for Se(IV) reaches a record value, placing the MoS4-LDH among the highest-capacity selenite adsorbing materials described to date. More interestingly, the presence of metal ions extremely accelerates the capture of the selenium oxoanions because of the reactions of the metal ions with the interlayer MoS42- anions. The sorptions of Se(VI)+Hg and Se(IV)+M (M = Hg2+, Cu2+, Cd2+) are exceptionally rapid, showing >99.5% removals for Hg2+ within 1 min and ∼99.0% removal for Se(VI) within 30 min, as well as >99.5% removals for pairs Cu2+ and Se(IV) within 10 min, and Cd2+ and Se(IV) within 30 min. During the sorption of SeO32-/HSeO3-, reduction of Se(IV) occurs to Se0 caused by the S2- sites in MoS42-. Sorption kinetics for the oxoanions follows a pseudo-second-order model consistent with chemisorption. The intercalated material of MoS4-LDH is very promising as a highly effective filter for decontamination of water with toxic Se(IV)/Se(VI) oxoanions along with heavy metals such as Hg2+, Cd2+, and Cu2+.

15.
Nanotechnology ; 28(18): 185401, 2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-28291740

RESUMO

Large over-potentials during battery operation remain a big obstacle for aprotic Li-O2 batteries. Herein, a nanocomposite of about 4 nm cobalt monoxide nanocrystals grown in situ on reduced graphene oxide substrates (CoO/RGO) has been synthesized via a thermal decomposition method. The CoO/RGO cathode delivers a high initial capacity of 14 450 mAh g-1 at a current density of 200 mA g-1. Simultaneously it displays little capacity fading after 32 cycles with a capacity restriction of 1000 mAh g-1. Additionally, compared with Ketjenblack and general CoO nanoparticles, ultrathin CoO nanoparticle-decorated RGO electrode materials with a delaminated structure display an observable reduction of over-potential in Li-O2 batteries. These results demonstrate that the introduction of RGO improves the performance of CoO, which is a promising strategy for optimizing the design of electrocatalysts for aprotic rechargeable Li-O2 batteries.

16.
J Am Chem Soc ; 138(8): 2858-66, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26829617

RESUMO

The MoS4(2-) ion was intercalated into magnesium-aluminum layered double hydroxide (MgAl-NO3-LDH) to produce a single phase material of Mg0.66Al0.34(OH)2(MoS4)0.17·nH2O (MgAl-MoS4-LDH), which demonstrates highly selective binding and extremely efficient removal of heavy metal ions such as Cu(2+), Pb(2+), Ag(+), and Hg(2+). The MoS4-LDH displays a selectivity order of Co(2+), Ni(2+), Zn(2+) < Cd(2+) ≪ Pb(2+) < Cu(2+) < Hg(2+) < Ag(+) for the metal ions. The enormous capacities for Hg(2+) (∼500 mg/g) and Ag(+) (450 mg/g) and very high distribution coefficients (Kd) of ∼10(7) mL/g place the MoS4-LDH at the top of materials known for such removal. Sorption isotherm for Ag(+) agrees with the Langmuir model suggesting a monolayer adsorption. It can rapidly lower the concentrations of Cu(2+), Pb(2+), Hg(2+), and Ag(+) from ppm levels to trace levels of ≤1 ppb. For the highly toxic Hg(2+) (at ∼30 ppm concentration), the adsorption is exceptionally rapid and highly selective, showing a 97.3% removal within 5 min, 99.7% removal within 30 min, and ∼100% removal within 1 h. The sorption kinetics for Cu(2+), Ag(+), Pb(2+), and Hg(2+) follows a pseudo-second-order model suggesting a chemisorption with the adsorption mechanism via M-S bonding. X-ray diffraction patterns of the samples after adsorption demonstrate the coordination and intercalation structures depending on the metal ions and their concentration. After the capture of heavy metals, the crystallites of the MoS4-LDH material retain the original hexagonal prismatic shape and are stable at pH ≈ 2-10. The MoS4-LDH material is thus promising for the remediation of heavy metal polluted water.

17.
J Am Chem Soc ; 137(10): 3670-7, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25714654

RESUMO

There is a need to develop highly selective and efficient materials for capturing uranium (normally as UO2(2+)) from nuclear waste and from seawater. We demonstrate the promising adsorption performance of S(x)-LDH composites (LDH is Mg/Al layered double hydroxide, [S(x)](2-) is polysulfide with x = 2, 4) for uranyl ions from a variety of aqueous solutions including seawater. We report high removal capacities (q(m) = 330 mg/g), large K(d)(U) values (10(4)-10(6) mL/g at 1-300 ppm U concentration), and high % removals (>95% at 1-100 ppm, or ∼80% for ppb level seawater) for UO2(2+) species. The S(x)-LDHs are exceptionally efficient for selectively and rapidly capturing UO2(2+) both at high (ppm) and trace (ppb) quantities from the U-containing water including seawater. The maximum adsorption coeffcient value K(d)(U) of 3.4 × 10(6) mL/g (using a V/m ratio of 1000 mL/g) observed is among the highest reported for U adsorbents. In the presence of very high concentrations of competitive ions such as Ca(2+)/Na(+), S(x)-LDH exhibits superior selectivity for UO2(2+), over previously reported sorbents. Under low U concentrations, (S4)(2-) coordinates to UO2(2+) forming anionic complexes retaining in the LDH gallery. At high U concentrations, (S4)(2-) binds to UO2(2+) to generate neutral UO2S4 salts outside the gallery, with NO3(-) entering the interlayer to form NO3-LDH. In the presence of high Cl(-) concentration, Cl(-) preferentially replaces [S4](2-) and intercalates into LDH. Detailed comparison of U removal efficiency of S(x)-LDH with various known sorbents is reported. The excellent uranium adsorption ability along with the environmentally safe, low-cost constituents points to the high potential of S(x)-LDH materials for selective uranium capture.

18.
Inorg Chem ; 53(3): 1521-9, 2014 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-24422491

RESUMO

Nanocage structures derived from decasulfonated ß-cyclodextrin (SCD) intercalated ZnAl- and MgAl- layered double hydroxides (LDHs) were prepared through calcination-rehydration reactions. The ZnAl- and MgAl-LDH layers revealed different basal spacings (1.51 nm for SCD-ZnAl-LDH and 1.61 nm for SCD-MgAl-LDH) when contacting SCD, while producing similar monolayer and vertical SCD orientations with cavity axis perpendicular to the LDH layer. The structures of the SCD-LDH and carboxymethyl-ß-cyclodextrin (CMCD)-LDH intercalates were fully analyzed and compared, and a structural model for the SCD-LDH was proposed. The thermal stability of SCD after intercalation was remarkably enhanced, with decomposition temperature increased by 230 °C. The adsorption property of the SCD-LDH composites for phenol compounds (the effects of adsorption time and phenol concentration on adsorption) was investigated completely. The monolayer arrangement of the interlayer SCD did not affect the adsorption efficiency toward organic compounds, which verified the highly swelling ability of the layered compounds in solvents. Both composites illustrated preferential adsorptive efficiency for 2,3-dimethylphenol (DMP) in comparison with other two phenols of hydroquinone (HQ) and tert-butyl-phenol (TBP), resulting from appropriate hydrophobicity and steric hindrance of DMP. For the two phenols of HQ and TBP, SCD-MgAl-LDH gave better adsorption capacity compared with SCD-ZnAl-LDH. The double-confinement effect due to the combination of the parent LDH host and intercalated secondary host may impose high selectivity for guests. This kind of nanocage structure may have potential applications as adsorbents, synergistic agents, and storage vessels for particular guests.

19.
Int J Mol Sci ; 16(1): 49-67, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25546387

RESUMO

Nitric oxide (NO) is highly unstable and has a half-life of seconds in buffer solutions. It is synthesized by NO-synthase (NOS), which has been found to exist in the following three isoforms: neuro nitric oxide synthase (nNOS), inducible nitric oxide synthase (iNOS), and endothelial nitric oxide synthase (eNOS). NOS activity is localized in the reproductive tracts of many species, although direct evidence for NOS isoforms in the Fallopian tubes of mice is still lacking. In the present study, we investigated the expression and regulation of NOS isoforms in the mouse and human Fallopian tubes during the estrous and menstrual cycles, respectively. We also measured isoform expression in humans with ectopic pregnancy and in mice treated with lipopolysaccharide (LPS). Our results confirmed the presence of different NOS isoforms in the mouse and human Fallopian tubes during different stages of the estrous and menstrual cycles and showed that iNOS expression increased in the Fallopian tubes of women with ectopic pregnancy and in LPS-treated mice. Elevated iNOS activity might influence ovulation, cilia beats, contractility, and embryo transportation in such a manner as to increase the risk of ectopic pregnancy. This study has provided morphological and molecular evidence that NOS isoforms are present and active in the human and mouse Fallopian tubes and suggests that iNOS might play an important role in both the reproductive cycle and infection-induced ectopic pregnancies.


Assuntos
Tubas Uterinas/enzimologia , Óxido Nítrico Sintase Tipo II/metabolismo , Gravidez Ectópica/enzimologia , Adulto , Animais , Ciclo Estral , Feminino , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Ciclo Menstrual , Camundongos , Camundongos Endogâmicos , Óxido Nítrico Sintase Tipo II/genética , Gravidez
20.
J Colloid Interface Sci ; 659: 550-559, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38198932

RESUMO

From the swollen LDH, bulky [Mo3S13]2- anions are facilely introduced into the LDH interlayers to assemble the Mo3S13-LDH composite, which exhibits excellent iodine capture performance and good irradiation resistance. The positive-charged LDH layers may disperse the [Mo3S13]2- uniformly within the interlayers, providing abundant adsorption sites for effectively trapping iodine. The Mo-S bond serving as a soft Lewis base has strong affinity to I2 with soft Lewis acidic characteristic, which is conducive to improvement of iodine capture via physical sorption. Besides, chemisorption has a significant contribution to the iodine adsorption. The S22-/S2- in [Mo3S13]2- can reduce the I2 to [I3]- ions, which are facilely fixed within the LDH gallery in virtue of electrostatic attraction. Meanwhile, the S22-/S2- themselves are oxidized to S8 and SO42-, while Mo4+ is oxidized (by O2 in air) to Mo6+, which combines with SO42- forming amorphous Mo(SO4)3. With the collective interactions of chemical and physical adsorption, the Mo3S13-LDH demonstrates an extremely large iodine adsorption capacity of 1580 mg/g. Under γ radiation, the structure of Mo3S13-LDH well maintains and iodine adsorption capability does not deteriorate, indicating the good irradiation resistance. This work provides an important reference to tailor cost-effective sorbents for trapping iodine from radioactive nuclear wastes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA