Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38843133

RESUMO

RATIONALE: Accelerated biological aging has been implicated in the development of interstitial lung disease (ILD) and other diseases of aging but remains poorly understood. OBJECTIVES: To identify plasma proteins that mediate the relationship between chronological age and survival association in patients with ILD. METHODS: Causal mediation analysis was performed to identify plasma proteins that mediated the chronological age-survival relationship in an idiopathic pulmonary fibrosis (IPF) discovery cohort. Proteins mediating this relationship after adjustment for false discovery were advanced for testing in an independent ILD validation cohort and explored in a chronic obstructive pulmonary disease (COPD) cohort. A proteomic-based measure of biological age was constructed and survival analysis performed assessing the impact of biological age and peripheral blood telomere length on the chronological age-survival relationship. RESULTS: Twenty-two proteins mediated the chronological age-survival relationship after adjustment for false discovery in the IPF discovery cohort (n=874), with nineteen remaining significant mediators of this relationship in the ILD validation cohort (n=983) and one mediating this relationship in the COPD cohort. Latent transforming growth factor beta binding protein 2 and ectodysplasin A2 receptor showed the strongest mediation across cohorts. A proteomic measure of biological age completely attenuated the chronological age-survival association and better discriminated survival than chronological age. Results were robust to adjustment for peripheral blood telomere length, which did not mediate the chronological age-survival relationship. CONCLUSIONS: Molecular measures of aging completely mediate the relationship between chronological age and survival, suggesting that chronological age has no direct effect on ILD survival.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38913573

RESUMO

Rationale: Idiopathic pulmonary fibrosis (IPF) causes irreversible fibrosis of the lung parenchyma. While antifibrotic therapy can slow IPF progression, treatment response is variable. There exists a critical need to develop a precision medicine approach to IPF. Objective: To identify and validate biologically driven molecular endotypes of IPF. Methods: Latent class analysis (LCA) was independently performed in prospectively recruited discovery (n=875) and validation (n=347) cohorts. Twenty-five plasma biomarkers associated with fibrogenesis served as class-defining variables. The association between molecular endotype and 4-year transplant-free survival was tested using multivariable Cox regression adjusted for baseline confounders. Endotype-dependent differential treatment response to future antifibrotic exposure was then assessed in a pooled cohort of patients naïve to antifibrotic therapy at time of biomarker measurement (n=555). Results: LCA independently identified two latent classes in both cohorts (p<0.0001). WAP four-disulfide core domain protein 2 (WFDC2) was the most important determinant of class membership across cohorts. Membership in Class 2 was characterized by higher biomarker concentrations and higher risk of death or transplantation (discovery: HR 2.02 [95% CI 1.64-2.48]; p<0.001; validation: HR 1.95 [1.34-2.82]; p<0.001). In pooled analysis, significant heterogeneity in treatment effect was observed between endotypes (pinteraction=0.030), with a favorable antifibrotic response in Class 2 (HR 0.64 [0.45-0.93]; p=0.018) but not in Class 1 (HR 1.19 [0.77-1.84]; p=0.422). Conclusions: In this multicohort study, we identified two novel molecular endotypes of IPF with divergent clinical outcomes and response to antifibrotics. Pending further validation, these endotypes could enable a precision medicine approach for future IPF clinical trials.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38422478

RESUMO

RATIONALE: Distinguishing connective tissue disease associated interstitial lung disease (CTD-ILD) from idiopathic pulmonary fibrosis (IPF) can be clinically challenging. OBJECTIVES: Identify proteins that separate and classify CTD-ILD from IPF patients. METHODS: Four registries with 1247 IPF and 352 CTD-ILD patients were included in analyses. Plasma samples were subjected to high-throughput proteomics assays. Protein features were prioritized using Recursive Feature Elimination (RFE) to construct a proteomic classifier. Multiple machine learning models, including Support Vector Machine, LASSO regression, Random Forest (RF), and imbalanced-RF, were trained and tested in independent cohorts. The validated models were used to classify each case iteratively in external datasets. MEASUREMENT AND MAIN RESULTS: A classifier with 37 proteins (PC37) was enriched in biological process of bronchiole development and smooth muscle proliferation, and immune responses. Four machine learning models used PC37 with sex and age score to generate continuous classification values. Receiver-operating-characteristic curve analyses of these scores demonstrated consistent Area-Under-Curve 0.85-0.90 in test cohort, and 0.94-0.96 in the single-sample dataset. Binary classification demonstrated 78.6%-80.4% sensitivity and 76%-84.4% specificity in test cohort, 93.5%-96.1% sensitivity and 69.5%-77.6% specificity in single-sample classification dataset. Composite analysis of all machine learning models confirmed 78.2% (194/248) accuracy in test cohort and 82.9% (208/251) in single-sample classification dataset. CONCLUSIONS: Multiple machine learning models trained with large cohort proteomic datasets consistently distinguished CTD-ILD from IPF. Identified proteins involved in immune pathways. We further developed a novel approach for single sample classification, which could facilitate honing the differential diagnosis of ILD in challenging cases and improve clinical decision-making.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38051927

RESUMO

RATIONALE: Oral microbiota associate with diseases of the mouth and serve as a source of lung microbiota. However, the role of oral microbiota in lung disease is unknown. OBJECTIVES: To determine associations between oral microbiota and disease severity and death in idiopathic pulmonary fibrosis. METHODS: We analyzed 16S rRNA gene and shotgun metagenomic sequencing data of buccal swabs from 511 patients with idiopathic pulmonary fibrosis in the multicenter CleanUP-IPF trial. Buccal swabs were collected from usual care, and antimicrobial cohorts. Microbiome data was correlated with measures of disease severity using principal component analysis and linear regression models. Associations between the buccal microbiome and mortality were determined using Cox additive models, Kaplan Meier analysis and Cox proportional hazards models. MEASUREMENTS AND MAIN RESULTS: Greater buccal microbial diversity associated with lower forced vital capacity (FVC) at baseline [mean diff -3.60: 95% CI -5.92 to -1.29 percent predicted FVC per 1 unit increment]. The buccal proportion of Streptococcus correlated positively with FVC [mean diff 0.80: 95% CI 0.16-1.43 percent predicted per 10% increase] (n=490). Greater microbial diversity was associated with an increased risk of death [HR 1.73: 95% CI 1.03-2.90] while a greater proportion of Streptococcus was associated with a reduced risk of death [HR 0.85: 95% CI 0.73 to 0.99]. The Streptococcus genus was mainly comprised of Streptococcus mitis species. CONCLUSIONS: Increasing buccal microbial diversity predicts disease severity and death in IPF. The oral commensal Streptococcus mitis spp associates with preserved lung function and improved survival.

5.
Artigo em Inglês | MEDLINE | ID: mdl-37847691

RESUMO

RATIONALE: Idiopathic pulmonary fibrosis (IPF) causes progressive lung scarring and high mortality. Reliable and accurate prognostic biomarkers are urgently needed. OBJECTIVE: To identify and validate circulating protein biomarkers of IPF survival. METHODS: High-throughput proteomic data were generated using prospectively collected plasma samples from patients with IPF from the Pulmonary Fibrosis Foundation Patient Registry (discovery cohort) and the Universities of California-Davis, Chicago, and Virginia (validation cohort). Proteins associated with three-year transplant-free survival (TFS) were identified using multivariable Cox proportional hazards regression. Those associated with TFS after adjustment for false discovery in the discovery cohort were advanced for testing in the validation cohort, with proteins maintaining TFS association with consistent effect direction considered validated. After combining cohorts, functional analyses were performed, and machine learning used to derive a proteomic signature of TFS. MAIN RESULTS: Of 2921 proteins tested in the discovery cohort (n=871), 231 were associated with differential TFS. Of these, 140 maintained TFS association with consistent effect direction in the validation cohort (n=355). After combining cohorts, validated proteins with strongest TFS association were latent-transforming growth factor beta-binding protein 2 (HR 2.43, 95% CI 2.09-2.82), collagen alpha-1(XXIV) chain (HR 2.21; 95% CI 1.86-2.39) and keratin 19 (HR 1.60; 95% CI 1.47-1.74). In decision curve analysis, a proteomic signature of TFS outperformed a similarly derived clinical prediction model. CONCLUSIONS: In largest proteomic investigation of IPF outcomes performed to date, we identified and validated 140 protein biomarkers of TFS. These results shed important light on potential drivers of IPF progression.

6.
Am J Respir Crit Care Med ; 207(11): 1515-1524, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36780644

RESUMO

Rationale: Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by limited treatment options and high mortality. A better understanding of the molecular drivers of IPF progression is needed. Objectives: To identify and validate molecular determinants of IPF survival. Methods: A staged genome-wide association study was performed using paired genomic and survival data. Stage I cases were drawn from centers across the United States and Europe and stage II cases from Vanderbilt University. Cox proportional hazards regression was used to identify gene variants associated with differential transplantation-free survival (TFS). Stage I variants with nominal significance (P < 5 × 10-5) were advanced for stage II testing and meta-analyzed to identify those reaching genome-wide significance (P < 5 × 10-8). Downstream analyses were performed for genes and proteins associated with variants reaching genome-wide significance. Measurements and Main Results: After quality controls, 1,481 stage I cases and 397 stage II cases were included in the analysis. After filtering, 9,075,629 variants were tested in stage I, with 158 meeting advancement criteria. Four variants associated with TFS with consistent effect direction were identified in stage II, including one in an intron of PCSK6 (proprotein convertase subtilisin/kexin type 6) reaching genome-wide significance (hazard ratio, 4.11 [95% confidence interval, 2.54-6.67]; P = 9.45 × 10-9). PCSK6 protein was highly expressed in IPF lung parenchyma. PCSK6 lung staining intensity, peripheral blood gene expression, and plasma concentration were associated with reduced TFS. Conclusions: We identified four novel variants associated with IPF survival, including one in PCSK6 that reached genome-wide significance. Downstream analyses suggested that PCSK6 protein plays a potentially important role in IPF progression.


Assuntos
Estudo de Associação Genômica Ampla , Fibrose Pulmonar Idiopática , Humanos , Pulmão , Modelos de Riscos Proporcionais , Europa (Continente) , Serina Endopeptidases , Pró-Proteína Convertases
7.
Thorax ; 78(6): 551-558, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35534152

RESUMO

BACKGROUND: Considerable clinical heterogeneity in idiopathic pulmonary fibrosis (IPF) suggests the existence of multiple disease endotypes. Identifying these endotypes would improve our understanding of the pathogenesis of IPF and could allow for a biomarker-driven personalised medicine approach. We aimed to identify clinically distinct groups of patients with IPF that could represent distinct disease endotypes. METHODS: We co-normalised, pooled and clustered three publicly available blood transcriptomic datasets (total 220 IPF cases). We compared clinical traits across clusters and used gene enrichment analysis to identify biological pathways and processes that were over-represented among the genes that were differentially expressed across clusters. A gene-based classifier was developed and validated using three additional independent datasets (total 194 IPF cases). FINDINGS: We identified three clusters of patients with IPF with statistically significant differences in lung function (p=0.009) and mortality (p=0.009) between groups. Gene enrichment analysis implicated mitochondrial homeostasis, apoptosis, cell cycle and innate and adaptive immunity in the pathogenesis underlying these groups. We developed and validated a 13-gene cluster classifier that predicted mortality in IPF (high-risk clusters vs low-risk cluster: HR 4.25, 95% CI 2.14 to 8.46, p=3.7×10-5). INTERPRETATION: We have identified blood gene expression signatures capable of discerning groups of patients with IPF with significant differences in survival. These clusters could be representative of distinct pathophysiological states, which would support the theory of multiple endotypes of IPF. Although more work must be done to confirm the existence of these endotypes, our classifier could be a useful tool in patient stratification and outcome prediction in IPF.


Assuntos
Fibrose Pulmonar Idiopática , Transcriptoma , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Perfilação da Expressão Gênica , Análise por Conglomerados , Biomarcadores
8.
Eur Respir J ; 62(5)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37591536

RESUMO

BACKGROUND: Studies suggest a harmful pharmacogenomic interaction exists between short leukocyte telomere length (LTL) and immunosuppressants in idiopathic pulmonary fibrosis (IPF). It remains unknown if a similar interaction exists in non-IPF interstitial lung disease (ILD). METHODS: A retrospective, multicentre cohort analysis was performed in fibrotic hypersensitivity pneumonitis (fHP), unclassifiable ILD (uILD) and connective tissue disease (CTD)-ILD patients from five centres. LTL was measured by quantitative PCR for discovery and replication cohorts and expressed as age-adjusted percentiles of normal. Inverse probability of treatment weights based on propensity scores were used to assess the association between mycophenolate or azathioprine exposure and age-adjusted LTL on 2-year transplant-free survival using weighted Cox proportional hazards regression incorporating time-dependent immunosuppressant exposure. RESULTS: The discovery and replication cohorts included 613 and 325 patients, respectively. In total, 40% of patients were exposed to immunosuppression and 22% had LTL <10th percentile of normal. fHP and uILD patients with LTL <10th percentile experienced reduced survival when exposed to either mycophenolate or azathioprine in the discovery cohort (mortality hazard ratio (HR) 4.97, 95% CI 2.26-10.92; p<0.001) and replication cohort (mortality HR 4.90, 95% CI 1.74-13.77; p=0.003). Immunosuppressant exposure was not associated with differential survival in patients with LTL ≥10th percentile. There was a significant interaction between LTL <10th percentile and immunosuppressant exposure (discovery pinteraction=0.013; replication pinteraction=0.011). Low event rate and prevalence of LTL <10th percentile precluded subgroup analyses for CTD-ILD. CONCLUSION: Similar to IPF, fHP and uILD patients with age-adjusted LTL <10th percentile may experience reduced survival when exposed to immunosuppression.


Assuntos
Doenças do Tecido Conjuntivo , Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Humanos , Azatioprina/efeitos adversos , Estudos Retrospectivos , Imunossupressores/uso terapêutico , Terapia de Imunossupressão , Telômero
9.
Am J Respir Crit Care Med ; 204(2): 197-208, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33689671

RESUMO

Rationale: Disease activity in idiopathic pulmonary fibrosis (IPF) remains highly variable, poorly understood, and difficult to predict. Objectives: To identify a predictor using short-term longitudinal changes in gene expression that forecasts future FVC decline and to characterize involved pathways and cell types. Methods: Seventy-four patients from COMET (Correlating Outcomes with Biochemical Markers to Estimate Time-Progression in IPF) cohort were dichotomized as progressors (≥10% FVC decline) or stable. Blood gene-expression changes within individuals were calculated between baseline and 4 months and regressed with future FVC status, allowing determination of expression variations, sample size, and statistical power. Pathway analyses were conducted to predict downstream effects and identify new targets. An FVC predictor for progression was constructed in COMET and validated using independent cohorts. Peripheral blood mononuclear single-cell RNA-sequencing data from healthy control subjects were used as references to characterize cell type compositions from bulk peripheral blood mononuclear RNA-sequencing data that were associated with FVC decline. Measurements and Main Results: The longitudinal model reduced gene-expression variations within stable and progressor groups, resulting in increased statistical power when compared with a cross-sectional model. The FVC predictor for progression anticipated patients with future FVC decline with 78% sensitivity and 86% specificity across independent IPF cohorts. Pattern recognition receptor pathways and mTOR pathways were downregulated and upregulated, respectively. Cellular deconvolution using single-cell RNA-sequencing data identified natural killer cells as significantly correlated with progression. Conclusions: Serial transcriptomic change predicts future FVC decline. An analysis of cell types involved in the progressor signature supports the novel involvement of natural killer cells in IPF progression.


Assuntos
Biomarcadores/sangue , Progressão da Doença , Fibrose Pulmonar Idiopática/fisiopatologia , Células Matadoras Naturais , Valor Preditivo dos Testes , Transcriptoma , Idoso , Estudos de Coortes , Estudos Transversais , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade
10.
Am J Respir Crit Care Med ; 201(5): 564-574, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31710517

RESUMO

Rationale: Idiopathic pulmonary fibrosis (IPF) is a complex lung disease characterized by scarring of the lung that is believed to result from an atypical response to injury of the epithelium. Genome-wide association studies have reported signals of association implicating multiple pathways including host defense, telomere maintenance, signaling, and cell-cell adhesion.Objectives: To improve our understanding of factors that increase IPF susceptibility by identifying previously unreported genetic associations.Methods: We conducted genome-wide analyses across three independent studies and meta-analyzed these results to generate the largest genome-wide association study of IPF to date (2,668 IPF cases and 8,591 controls). We performed replication in two independent studies (1,456 IPF cases and 11,874 controls) and functional analyses (including statistical fine-mapping, investigations into gene expression, and testing for enrichment of IPF susceptibility signals in regulatory regions) to determine putatively causal genes. Polygenic risk scores were used to assess the collective effect of variants not reported as associated with IPF.Measurements and Main Results: We identified and replicated three new genome-wide significant (P < 5 × 10-8) signals of association with IPF susceptibility (associated with altered gene expression of KIF15, MAD1L1, and DEPTOR) and confirmed associations at 11 previously reported loci. Polygenic risk score analyses showed that the combined effect of many thousands of as yet unreported IPF susceptibility variants contribute to IPF susceptibility.Conclusions: The observation that decreased DEPTOR expression associates with increased susceptibility to IPF supports recent studies demonstrating the importance of mTOR signaling in lung fibrosis. New signals of association implicating KIF15 and MAD1L1 suggest a possible role of mitotic spindle-assembly genes in IPF susceptibility.


Assuntos
Fibrose Pulmonar Idiopática/genética , Idoso , Estudos de Casos e Controles , Proteínas de Ciclo Celular/genética , Feminino , Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Cinesinas/genética , Masculino , Pessoa de Meia-Idade , Medição de Risco , Transdução de Sinais , Fuso Acromático , Serina-Treonina Quinases TOR/metabolismo
12.
Am J Respir Crit Care Med ; 200(3): 336-347, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30566847

RESUMO

Rationale: Immunosuppression was associated with adverse events for patients with idiopathic pulmonary fibrosis (IPF) in the PANTHER-IPF (Evaluating the Effectiveness of Prednisone, Azathioprine and N-Acetylcysteine in Patients with IPF) clinical trial. The reason why some patients with IPF experience harm is unknown.Objectives: To determine whether age-adjusted leukocyte telomere length (LTL) was associated with the harmful effect of immunosuppression in patients with IPF.Methods: LTL was measured from available DNA samples from PANTHER-IPF (interim analysis, n = 79; final analysis, n = 118). Replication cohorts included ACE-IPF (Anticoagulant Effectiveness in Idiopathic Pulmonary Fibrosis) (n = 101) and an independent observational cohort (University of Texas Southwestern Medical Center-IPF, n = 170). LTL-stratified and medication-stratified survival analyses were performed using multivariable Cox regression models for composite endpoint-free survival.Measurements and Main Results: Of the subjects enrolled in the PANTHER-IPF and ACE-IPF, 62% (49/79) and 56% (28/50) had an LTL less than the 10th percentile of normal, respectively. In PANTHER-IPF, exposure to prednisone/azathioprine/N-acetylcysteine was associated with a higher composite endpoint of death, lung transplantation, hospitalization, or FVC decline for those with an LTL less than the 10th percentile (hazard ratio, 2.84; 95% confidence interval, 1.02-7.87; P = 0.045). This finding was replicated in the placebo arm of ACE-IPF for those exposed to immunosuppression (hazard ratio, 7.18; 95% confidence interval, 1.52-33.84; P = 0.013). A propensity-matched University of Texas Southwestern Medical Center IPF cohort showed a similar association between immunosuppression and composite endpoints (death, lung transplantation, or FVC decline) for those with an LTL less than the 10th percentile (hazard ratio, 3.79; 95% confidence interval, 1.73-8.30; P = 0.00085). An interaction was found between immunosuppression and LTL for the combined PANTHER-IPF and ACE-IPF clinical trials (Pinteraction = 0.048), and the University of Texas Southwestern Medical Center IPF cohort (Pinteraction = 0.00049).Conclusions: LTL is a biomarker that may identify patients with IPF at risk for poor outcomes when exposed to immunosuppression.


Assuntos
Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/terapia , Imunossupressores/uso terapêutico , Telômero/patologia , Idoso , Anti-Inflamatórios/uso terapêutico , Azatioprina/uso terapêutico , Estudos de Coortes , Feminino , Humanos , Fibrose Pulmonar Idiopática/mortalidade , Leucócitos/patologia , Transplante de Pulmão , Masculino , Pessoa de Meia-Idade , Prednisona/uso terapêutico , Taxa de Sobrevida
15.
Am J Respir Crit Care Med ; 200(11): 1402-1413, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31339356

RESUMO

Rationale: Interstitial lung abnormalities (ILAs) are associated with the highest genetic risk locus for idiopathic pulmonary fibrosis (IPF); however, the extent to which there are unique associations among individuals with ILAs or additional overlap with IPF is not known.Objectives: To perform a genome-wide association study (GWAS) of ILAs.Methods: ILAs and a subpleural-predominant subtype were assessed on chest computed tomography (CT) scans in the AGES (Age Gene/Environment Susceptibility), COPDGene (Genetic Epidemiology of Chronic Obstructive Pulmonary Disease [COPD]), Framingham Heart, ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points), MESA (Multi-Ethnic Study of Atherosclerosis), and SPIROMICS (Subpopulations and Intermediate Outcome Measures in COPD Study) studies. We performed a GWAS of ILAs in each cohort and combined the results using a meta-analysis. We assessed for overlapping associations in independent GWASs of IPF.Measurements and Main Results: Genome-wide genotyping data were available for 1,699 individuals with ILAs and 10,274 control subjects. The MUC5B (mucin 5B) promoter variant rs35705950 was significantly associated with both ILAs (P = 2.6 × 10-27) and subpleural ILAs (P = 1.6 × 10-29). We discovered novel genome-wide associations near IPO11 (rs6886640, P = 3.8 × 10-8) and FCF1P3 (rs73199442, P = 4.8 × 10-8) with ILAs, and near HTRE1 (rs7744971, P = 4.2 × 10-8) with subpleural-predominant ILAs. These novel associations were not associated with IPF. Among 12 previously reported IPF GWAS loci, five (DPP9, DSP, FAM13A, IVD, and MUC5B) were significantly associated (P < 0.05/12) with ILAs.Conclusions: In a GWAS of ILAs in six studies, we confirmed the association with a MUC5B promoter variant and found strong evidence for an effect of previously described IPF loci; however, novel ILA associations were not associated with IPF. These findings highlight common genetically driven biologic pathways between ILAs and IPF, and also suggest distinct ones.


Assuntos
Predisposição Genética para Doença/genética , Fibrose Pulmonar Idiopática/genética , Doenças Pulmonares Intersticiais/genética , Idoso , Estudos de Casos e Controles , Feminino , Loci Gênicos , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Mucina-5B/genética , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas/genética , Proteínas Semelhantes à Proteína de Ligação a TATA-Box , beta Carioferinas/genética
16.
Am J Respir Crit Care Med ; 196(2): 208-219, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28157391

RESUMO

RATIONALE: Differences in the lung microbial community influence idiopathic pulmonary fibrosis (IPF) progression. Whether the lung microbiome influences IPF host defense remains unknown. OBJECTIVES: To explore the host immune response and microbial interaction in IPF as they relate to progression-free survival (PFS), fibroblast function, and leukocyte phenotypes. METHODS: Paired microarray gene expression data derived from peripheral blood mononuclear cells as well as 16S ribosomal RNA sequencing data from bronchoalveolar lavage obtained as part of the COMET-IPF (Correlating Outcomes with Biochemical Markers to Estimate Time-Progression in Idiopathic Pulmonary Fibrosis) study were used to conduct association pathway analyses. The responsiveness of paired lung fibroblasts to Toll-like receptor 9 (TLR9) stimulation by CpG-oligodeoxynucleotide (CpG-ODN) was integrated into microbiome-gene expression association analyses for a subset of individuals. The relationship between associated pathways and circulating leukocyte phenotypes was explored by flow cytometry. MEASUREMENTS AND MAIN RESULTS: Down-regulation of immune response pathways, including nucleotide-binding oligomerization domain (NOD)-, Toll-, and RIG1-like receptor pathways, was associated with worse PFS. Ten of the 11 PFS-associated pathways correlated with microbial diversity and individual genus, with species accumulation curve richness as a hub. Higher species accumulation curve richness was significantly associated with inhibition of NODs and TLRs, whereas increased abundance of Streptococcus correlated with increased NOD-like receptor signaling. In a network analysis, expression of up-regulated signaling pathways was strongly associated with decreased abundance of operational taxonomic unit 1341 (OTU1341; Prevotella) among individuals with fibroblasts responsive to CpG-ODN stimulation. The expression of TLR signaling pathways was also linked to CpG-ODN responsive fibroblasts, OTU1341 (Prevotella), and Shannon index of microbial diversity in a network analysis. Lymphocytes expressing C-X-C chemokine receptor 3 CD8 significantly correlated with OTU1348 (Staphylococcus). CONCLUSIONS: These findings suggest that host-microbiome interactions influence PFS and fibroblast responsiveness.


Assuntos
Fibrose Pulmonar Idiopática/imunologia , Fibrose Pulmonar Idiopática/microbiologia , Imunidade Inata/imunologia , Microbiota/imunologia , Lavagem Broncoalveolar , Intervalo Livre de Doença , Regulação para Baixo/imunologia , Feminino , Citometria de Fluxo , Expressão Gênica/imunologia , Humanos , Masculino , Análise em Microsséries , Pessoa de Meia-Idade
19.
Am J Respir Crit Care Med ; 192(12): 1475-82, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26331942

RESUMO

RATIONALE: Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease of unknown etiology. The genes TOLLIP and MUC5B play important roles in lung host defense, which is an immune process influenced by oxidative signaling. Whether polymorphisms in TOLLIP and MUC5B modify the effect of immunosuppressive and antioxidant therapy in individuals with IPF is unknown. OBJECTIVES: To determine whether single-nucleotide polymorphisms (SNPs) within TOLLIP and MUC5B modify the effect of interventions in subjects participating in the Evaluating the Effectiveness of Prednisone, Azathioprine, and N-Acetylcysteine in Patients with Idiopathic Pulmonary Fibrosis (PANTHER-IPF) clinical trial. METHODS: SNPs within TOLLIP (rs5743890/rs5743894/rs5743854/rs3750920) and MUC5B (rs35705950) were genotyped. Interaction modeling was conducted with multivariable Cox regression followed by genotype-stratified survival analysis using a composite endpoint of death, transplantation, hospitalization, or a decline of ≥ 10% in FVC. MEASUREMENTS AND MAIN RESULTS: Significant interaction was observed between N-acetylcysteine (NAC) therapy and rs3750920 within TOLLIP (P interaction = 0.001). After stratifying by rs3750920 genotype, NAC therapy was associated with a significant reduction in composite endpoint risk (hazard ratio, 0.14; 95% confidence interval, 0.02-0.83; P = 0.03) in those with a TT genotype, but a nonsignificant increase in composite endpoint risk (hazard ratio, 3.23; 95% confidence interval, 0.79-13.16; P = 0.10) was seen in those with a CC genotype. These findings were then replicated in an independent IPF cohort. CONCLUSIONS: NAC may be an efficacious therapy for individuals with IPF with an rs3750920 (TOLLIP) TT genotype, but it was associated with a trend toward harm in those with a CC genotype. A genotype-stratified prospective clinical trial should be conducted before any recommendation regarding the use of off-label NAC to treat IPF.


Assuntos
Acetilcisteína/uso terapêutico , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mucina-5B/genética , Idoso , Estudos de Coortes , Feminino , Predisposição Genética para Doença/genética , Humanos , Fibrose Pulmonar Idiopática/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Masculino , Mucina-5B/imunologia , Polimorfismo de Nucleotídeo Único/genética , Polimorfismo de Nucleotídeo Único/imunologia , Risco
20.
Circulation ; 129(16): 1650-8, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24515990

RESUMO

BACKGROUND: We postulated that the hypoxic response in sickle cell disease (SCD) contributes to altered gene expression and pulmonary hypertension, a complication associated with early mortality. METHODS AND RESULTS: To identify genes regulated by the hypoxic response and not other effects of chronic anemia, we compared expression variation in peripheral blood mononuclear cells from 13 subjects with SCD with hemoglobin SS genotype and 15 subjects with Chuvash polycythemia (VHL(R200W) homozygotes with constitutive upregulation of hypoxia-inducible factors in the absence of anemia or hypoxia). At a 5% false discovery rate, 1040 genes exhibited >1.15-fold change in both conditions; 297 were upregulated and 743 downregulated including MAPK8 encoding a mitogen-activated protein kinase important for apoptosis, T-cell differentiation, and inflammatory responses. Association mapping with a focus on local regulatory polymorphisms in 61 patients with SCD identified expression quantitative trait loci for 103 of these hypoxia response genes. In a University of Illinois SCD cohort, the A allele of a MAPK8 expression quantitative trait locus, rs10857560, was associated with precapillary pulmonary hypertension defined as mean pulmonary artery pressure ≥25 mm Hg and pulmonary capillary wedge pressure ≤15 mm Hg at right heart catheterization (allele frequency, 0.66; odds ratio, 13.8; n=238). This association was confirmed in an independent Walk-Treatment of Pulmonary Hypertension and Sickle Cell Disease With Sildenafil Therapy cohort (allele frequency, 0.65; odds ratio, 11.3; n=519). The homozygous AA genotype of rs10857560 was associated with decreased MAPK8 expression and present in all 14 of the identified precapillary pulmonary hypertension cases among the combined 757 patients. CONCLUSIONS: Our study demonstrates a prominent hypoxic transcription component in SCD and a MAPK8 expression quantitative trait locus associated with precapillary pulmonary hypertension.


Assuntos
Anemia Falciforme/epidemiologia , Anemia Falciforme/genética , Hipertensão Pulmonar/epidemiologia , Hipertensão Pulmonar/genética , Proteína Quinase 8 Ativada por Mitógeno/genética , Adulto , Anemia Falciforme/patologia , Apoptose/fisiologia , Hipóxia Celular/fisiologia , Estudos de Coortes , Feminino , Regulação Enzimológica da Expressão Gênica , Humanos , Hipertensão Pulmonar/patologia , Inflamação/epidemiologia , Inflamação/genética , Inflamação/patologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Masculino , Proteína Quinase 8 Ativada por Mitógeno/biossíntese , Estudos Prospectivos , Locos de Características Quantitativas/fisiologia , Linfócitos T/metabolismo , Linfócitos T/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA