Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(3): e18086, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38152044

RESUMO

Cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) are the second most common cancers in women aged 20-39. While HPV screening can help with early detection of cervical cancer, many patients are already in the medium to late stages when they are identified. As a result, searching for novel biomarkers to predict CESC prognosis and propose molecular treatment targets is critical. TGFA is a polypeptide growth factor with a high affinity for the epidermal growth factor receptor. Several studies have shown that TGFA can improve cancer growth and progression, but data on its impact on the occurrence and advancement of CESC is limited. In this study, we used clinical data analysis and bioinformatics techniques to explore the relationship between TGFA and CESC. The results showed that TGFA was highly expressed in cervical cancer tissues and cells. TGFA knockdown can inhibit the proliferation, migration and invasion of cervical cancer cells. In addition, after TGFA knockout, the expression of IL family and MMP family proteins in CESC cell lines was significantly reduced. In conclusion, TGFA plays an important role in the occurrence and development of cervical cancer. Therefore, TGFA may become a new target for cervical cancer treatment.


Assuntos
Carcinoma de Células Escamosas , Neoplasias do Colo do Útero , Humanos , Feminino , Linhagem Celular , Biologia Computacional , Pescoço , Fator de Crescimento Transformador alfa
2.
Phys Chem Chem Phys ; 26(16): 12594-12599, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38596870

RESUMO

We report the spin reorientation transition (SRT) and the low field controllable continuous spin switching (SSW) of the Tm0.75Yb0.25FeO3 (TYFO) single crystal in this study. The SRT, characterized by the transition from Γ2(Fx, Cy, Gz)-Γ4(Gx, Ay, Fz), occurs within the temperature range of 20-27 K. Under an external magnetic field of 50 Oe, the SSW occurs along the c-axis at approximately 98 K due to the reversal of Tm3+ magnetic moment induced by the magnetic coupling change between Tm3+ and Fe3+, transitioning from a parallel to an antiparallel alignment. Notably, a continuous SSW is observed along the a-axis at low temperatures, which has not been previously reported in rare earth orthoferrites. This unique behavior can be easily manipulated by low magnetic fields within the temperature range of 2-20 K. Both the spin reorientation transition and spin switching phenomena in the TYFO single crystal arise from interactions between rare earth ions and iron ions and can be effectively regulated by applied low magnetic fields, making it a promising material for low-field spin devices.

3.
Bioorg Chem ; 135: 106537, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37043883

RESUMO

High expression of histone deacetylase 2 (HDAC2) is recognized as a marker of invasive breast cancer (BC). HDAC2 is not only responsible for enhancing tumor cell growth, development, and anti-apoptosis, but also plays a significant role in regulating PD-L1 on the surface of tumor cells. Continuous expression of PD-L1 allows tumor cells to escape immune surveillance. There is not much research on how HDAC2 affects the immune system in breast cancer. Ginsenoside Rh4 (Rh4) is a major rare saponin in heat-treated ginseng, which is widely applied in treating and preventing various diseases because of its potent medicinal value and stable safety. However, it is unclear how Rh4 affects the tumor immune microenvironment in breast cancer. Therefore, this paper aims to investigate the effect of Rh4 on HDAC2 in breast cancer, specifically the effect of HDAC2 on apoptosis and the immune microenvironment to inhibit breast cancer growth. According to our study, ginsenoside Rh4 has been shown to significantly suppress breast cancer cell proliferation without any adverse effects. The molecular docking results of Rh4 and HDAC2 indicate a binding energy of -6.06 kcal/mol, suggesting the potential of Rh4 as a targeting modulator of HDAC2. Mechanistically, Rh4 induces apoptosis of breast cancer cells by the HDAC2-mediated caspase pathway and inhibits the HDAC2-mediated JAK/STAT pathway to regulate the immune microenvironment, which inhibits breast cancer growth. Specifically, Rh4 was shown for the first time to blockade immune checkpoints (PD-1/PD-L1) and increase levels of T-lymphocytes in the tumor. In a word, our study establishes a theoretical framework for applying Rh4 as an immune checkpoint inhibitor as part of breast cancer treatment.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Antígeno B7-H1/metabolismo , Histona Desacetilase 2/metabolismo , Janus Quinases/metabolismo , Simulação de Acoplamento Molecular , Transdução de Sinais , Fatores de Transcrição STAT/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral
4.
Phytother Res ; 37(10): 4655-4673, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37525965

RESUMO

The worldwide overall 5-year survival rate of esophageal squamous cell carcinoma (ESCC) patients is less than 20%, and novel therapeutic strategies for these patients are urgently needed. Harmine is a natural ß-carboline alkaloid, which received great interest in cancer research because of its biological and anti-tumor activities. The aim of this study is to examine the effects of harmine on ESCC and its mechanism. We investigated the effects of harmine on proliferation, cell cycle, apoptosis, and tumor growth in vivo. RNA sequencing (RNA-seq), real-time PCR, and western blotting were used to detect the mechanism. Harmine inhibited ESCC cell growth in vitro and tumor growth in vivo. Differentially expressed genes in harmine-treated ESCC cells were mainly involved in protein processing in the endoplasmic reticulum (ER). Real-time PCR and western blotting confirmed harmine-induced cellular ER stress. CRISPR-Cas9 knockout of C/EBP homologous protein (CHOP) abolished harmine-induced expression of death receptor 5 and apoptosis. Harmine also induced the expression of CHOP-mediated sestrin-2, which in turn contributes to autophagosome formation via suppressing the AMP-activated protein kinase-protein kinase B-mammalian target of rapamycin signaling pathway. In conclusion, our results demonstrate that harmine inhibits the growth of ESCC through its regulation of ER stress, suggesting that it is a promising candidate for ESCC treatment.

5.
Int Wound J ; 20(9): 3498-3513, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37245869

RESUMO

Diabetes mellitus (DM) can lead to diabetic ulcers (DUs), which are the most severe complications. Due to the need for more accurate patient classifications and diagnostic models, treatment and management strategies for DU patients still need improvement. The difficulty of diabetic wound healing is caused closely related to biological metabolism and immune chemotaxis reaction dysfunction. Therefore, the purpose of our study is to identify metabolic biomarkers in patients with DU and construct a molecular subtype-specific prognostic model that is highly accurate and robust. RNA-sequencing data for DU samples were obtained from the Gene Expression Omnibus (GEO) database. DU patients and normal individuals were compared regarding the expression of metabolism-related genes (MRGs). Then, a novel diagnostic model based on MRGs was constructed with the random forest algorithm, and classification performance was evaluated utilizing receiver operating characteristic (ROC) analysis. The biological functions of MRGs-based subtypes were investigated using consensus clustering analysis. A principal component analysis (PCA) was conducted to determine whether MRGs could distinguish between subtypes. We also examined the correlation between MRGs and immune infiltration. Lastly, qRT-PCR was utilized to validate the expression of the hub MRGs with clinical validations and animal experimentations. Firstly, 8 metabolism-related hub genes were obtained by random forest algorithm, which could distinguish the DUs from normal samples validated by the ROC curves. Secondly, DU samples could be consensus clustered into three molecular classifications by MRGs, verified by PCA analysis. Thirdly, associations between MRGs and immune infiltration were confirmed, with LYN and Type 1 helper cell significantly positively correlated; RHOH and TGF-ß family remarkably negatively correlated. Finally, clinical validations and animal experiments of DU skin tissue samples showed that the expressions of metabolic hub genes in the DU groups were considerably upregulated, including GLDC, GALNT6, RHOH, XDH, MMP12, KLK6, LYN, and CFB. The current study proposed an auxiliary MRGs-based DUs model while proposing MRGs-based molecular clustering and confirmed the association with immune infiltration, facilitating the diagnosis and management of DU patients and designing individualized treatment plans.


Assuntos
Diabetes Mellitus , Úlcera , Animais , Humanos , Biomarcadores , Consenso , Bases de Dados Factuais
6.
New Phytol ; 236(1): 266-282, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35729085

RESUMO

Sugar efflux from host plants is essential for pathogen survival and proliferation. Sugar transporter-mediated redistribution of host sugar contributes to the outcomes of plant-pathogen interactions. However, few studies have focused on how sugar translocation is strategically manipulated during host colonization. To elucidate this question, the wheat sugar transport protein (STP) TaSTP3 responding to Puccinia striiformis f. sp. tritici (Pst) infection was characterized for sugar transport properties in Saccharomyces cerevisiae and its potential role during Pst infection by RNA interference and overexpression in wheat. In addition, the transcription factors regulating TaSTP3 expression were further determined. The results showed that TaSTP3 is localized to the plasma membrane and functions as a sugar transporter of hexose and sucrose. TaSTP3 confers enhanced wheat susceptibility to Pst, and overexpression of TaSTP3 resulted in increased sucrose accumulation and transcriptional suppression of defense-related genes. Furthermore, TaWRKY19, TaWRKY61 and TaWRKY82 were identified as positive transcriptional regulators of TaSTP3 expression. Our findings reveal that the Pst-induced sugar transporter TaSTP3 is transcriptionally activated by TaWRKY19/61/82 and facilitates wheat susceptibility to stripe rust possibly through elevated sucrose concentration, and suggest TaSTP3 as a strong target for engineering wheat resistance to stripe rust.


Assuntos
Basidiomycota , Triticum , Basidiomycota/fisiologia , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Sacarose/metabolismo , Açúcares/metabolismo , Fatores de Transcrição/metabolismo , Triticum/genética , Triticum/metabolismo
7.
Opt Express ; 30(10): 17321-17331, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-36221557

RESUMO

Allowing microwaves to transmit through without changing the wavefront is one of the essential requirements of the dome structures of antenna arrays like radars. Here, we demonstrate a microwave metasurface as an array of two types of meta-atoms, which are the flip counterparts to each other. Due to the reciprocity and space-inversion symmetry, the wavefront in the transmission is unchanged by the metasurface in a broad spectrum; while at the same time, the wavefront in reflection can be manipulated independently by changing the arrangement of the meta-atoms. Specifically, a random-flip metasurface that produces diffuse reflection is realized, enabling a camouflaged meta-dome. The broadband, wide-angle, and polarization-independent diffuse reflection and undistorted transmission are numerically and experimentally verified. Our finding enables a unique meta-dome structure that has camouflage functionality.

8.
Inorg Chem ; 61(37): 14815-14823, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36074388

RESUMO

Field-tuning mechanisms of spin switching and spin reorientation (SR) transition were investigated in a series of high-quality single crystal samples of PrxEr1-xFeO3 (x = 0, 0.1, 0.3, 0.5) prepared using the optical floating zone method. The single crystal quality, structure, and axis orientation were determined by room-temperature powder X-ray diffraction, back-reflection Laue X-ray diffraction, and Raman scattering at room temperature. Magnetic measurements indicate that the type and temperature region of SR transition are tuned by introducing different ratios of Pr3+ doping (x = 0, 0.1, 0.3, 0.5). The trigger temperatures of spin switching and magnetization compensation temperature of PrxEr1-xFeO3 crystals can be adjusted by doping with different proportions of Pr3+. Furthermore, the trigger temperature of the two types of spin switching in Pr0.3Er0.7FeO3 along the a-axis can be regulated by an external field. Meanwhile, the isothermal magnetic field-triggered spin switching effect is also observed along the a and c-axes of Pr0.3Er0.7FeO3. An in-depth understanding of the magnetic coupling and competition between the R3+ and Fe3+ magnetic sublattices, within the RFeO3 system, has important implications for advancing the practical applications of the relevant spin switching materials.

9.
Phys Chem Chem Phys ; 24(2): 735-742, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34935008

RESUMO

The magnetic behavior of a rare-earth orthoferrite ErFeO3 single crystal can be controlled by low magnetic fields from a few to hundreds of Oe. Here we investigated a high-quality ErFeO3 single crystal in the temperature range of 5-120 K, with two types of spin switching in the field-cooled-cooling (FCC) and field-cooled-warming (FCW) processes below the temperature of the spin reorientation (SR) transition from Γ4 to Γ2 at 98-88 K. The magnitude of the applied magnetic fields can regulate two types of spin switching along the a-axis of the ErFeO3 single crystal but does not affect the type and temperature range of the SR transition. An interesting "multi-step" type-II spin switching is observed in FCW under low magnetic fields (H < 18 Oe) just below the SR transition temperature, which is associated with the interaction and the change of magnetic configurations from rare-earth and iron magnetic sublattices. When the magnetic field is lower than 15 Oe, the type-II spin switching in the FCW process gradually changes to a continuous magnetic transition along the a-axis of the ErFeO3 single crystal. As the magnetic field is reduced to less than 17 Oe, the type-I spin switching in the FCW process also transforms into a continuous magnetic transition. Understanding the magnetic reversal effects will help us explore the potential applications of these magnetic materials for future information devices.

10.
Entropy (Basel) ; 24(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37420520

RESUMO

In this work, we formulate the image in-painting as a matrix completion problem. Traditional matrix completion methods are generally based on linear models, assuming that the matrix is low rank. When the original matrix is large scale and the observed elements are few, they will easily lead to over-fitting and their performance will also decrease significantly. Recently, researchers have tried to apply deep learning and nonlinear techniques to solve matrix completion. However, most of the existing deep learning-based methods restore each column or row of the matrix independently, which loses the global structure information of the matrix and therefore does not achieve the expected results in the image in-painting. In this paper, we propose a deep matrix factorization completion network (DMFCNet) for image in-painting by combining deep learning and a traditional matrix completion model. The main idea of DMFCNet is to map iterative updates of variables from a traditional matrix completion model into a fixed depth neural network. The potential relationships between observed matrix data are learned in a trainable end-to-end manner, which leads to a high-performance and easy-to-deploy nonlinear solution. Experimental results show that DMFCNet can provide higher matrix completion accuracy than the state-of-the-art matrix completion methods in a shorter running time.

11.
Nanotechnology ; 28(35): 355201, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28636567

RESUMO

The search for low-dimensional materials with unique electronic properties is important for the development of electronic devices in the nanoscale. Through systematic first-principles calculations, we found that the band gaps of the two-dimensional honeycomb monolayers (HMs) and one-dimensional single-walled nanotubes (SWNTs) of IIB-VI semiconductors (ZnO, CdO, ZnS and CdS) are nearly chirality-independent and weakly diameter-dependent. Based on analysis of the electronic structures, it was found that the conduction band minimum is contributed to by the spherically symmetric s orbitals of cations and the valence band maximum is dominated by the in-plane [Formula: see text] and [Formula: see text] hybridizations. These electronic states are robust against radius curvature, resulting in the invariant feature of the band gaps for the structures changing from HM to SWNTs. The band gaps of these materials range from 2.3 to 4.7 eV, which is of potential application in electronic devices and optoelectronic devices. Our studies show that searching for and designing specific electronic structures can facilitate the process of exploring novel nanomaterials for future applications.

12.
Phys Chem Chem Phys ; 18(36): 25645-25654, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27711585

RESUMO

Vanadium oxide (V2O5), as a potential positive electrode for sodium ion batteries (SIBs), has attracted considerable attention from researchers. Herein, amorphous and crystalline V2O5 cathodes on a graphite paper without a binder and conductive additives have been synthesized via facile anodic electrochemical deposition following different heat treatments. Both the amorphous V2O5 (a-V2O5) cathode and crystalline V2O5 (c-V2O5) cathode show good rate cycling performance and long cycling life. After five rate cycles, the reversible capacities of both the cathodes were almost unchanged at different current densities from 40 to 5120 mA g-1. Long cycling tests with 10 000 cycles were carried out and the two cathodes exhibit excellent cycling stability. The c-V2O5 cathode retains a high specific capacity of 54 mA h g-1 after 10 000 cycles at 2560 mA g-1 and can be charged within 80 s. Interestingly, the a-V2O5 cathode possesses higher reversible capacities than the c-V2O5 cathode at low current densities, whereas it is inversed at high current densities. The c-V2O5 cathode shows faster capacity recovery from 5120 to 40 mA g-1 than the a-V2O5 cathode. When discharged at 80 mA g-1 (long discharge time of 140 min) and charged at 640 mA g-1 (short charge time of 17 min), the a-V2O5 cathode shows a higher discharge capacity than its c-V2O5 counterpart. The different electrochemical performance of a-V2O5 and c-V2O5 cathodes during various electrochemical processes can provide a rational selection of amorphous or crystalline V2O5 cathode materials for SIBs in their practical applications to meet the variable requirements.

13.
Biotechnol Appl Biochem ; 62(4): 467-75, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25231012

RESUMO

Recombinant collagen and gelatin have been applied in biomedical materials field because of products from genetically engineered microorganisms with improved safety, traceability, reproducibility, and homogeneous quality. To obtain high-level secretory expression of single-chain full-length human collagen α1(III) chain (COL3A1) without the N and C telopeptides, the cDNA coding for the human COL3A1 gene was cloned into the secretory expression vector pPIC9K and integrated into Pichia pastoris GS115. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting analysis of culture supernatant from the recombinant methylotrophic yeast suggested that the unhydroxylated recombinant human COL3A1 (rhCOL3A1) was secreted into the culture medium, and exhibited an apparent molecular mass of approximately 130 kDa, which is 1.4 times higher than the theoretical one. Finally, the unhydroxylated rhCOL3A1 was purified to greater than 90% purity using a four-step approach. In addition, methylthiazolydiphenyl-tetrazolium bromide experiments indicated that low concentration of rhCOL3A1 could promote Baby hamster kidney cell (BHK21) proliferation effectively. The production and purification of rhCOL3A1 described in this study offer a new method for obtaining high level of rhCOL3A1 in relatively pure form, which is suitable for biomedical materials application.


Assuntos
Colágeno Tipo III/biossíntese , Expressão Gênica , Pichia/metabolismo , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Clonagem Molecular , Colágeno Tipo III/química , Colágeno Tipo III/farmacologia , Cricetinae , Vetores Genéticos/genética , Humanos , Pichia/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia
14.
Biotechnol Appl Biochem ; 62(3): 293-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24953863

RESUMO

Type III collagen is one of the most abundant proteins in the human body, which forms collagen fibrils and provides the stiff, resilient characteristics of many tissues. In this paper, a new method for secretory expression of recombinant hydroxylated human collagen α1(III) chain in Pichia pastoris GS115 was applied. The gene encoding for full-length human collagen α1(III) chain (COL3A1) without N-terminal propeptide and C-terminal propeptide was cloned in the pPIC9K expression vector. The prolyl 4-hydroxylase (P4H, EC 1.14.11.2) α-subunit (P4Hα) and ß-subunit (P4Hß) genes were cloned in the same expression vector, pPICZB. Fluorogenic quantitative PCR indicates that COL3A1 and P4H genes have been expressed in mRNA level. SDS-PAGE shows that secretory expression of recombinant human collagen α1(III) chain was successfully achieved in P. pastoris GS115. In addition, the result of amino acids composition analysis shows that the recombinant human collagen α1(III) chain contains hydroxyproline by coexpression with the P4H. Furthermore, liquid chromatography coupled with tandem mass spectrometry analysis demonstrates that proline residues of the recombinant human collagen α1(III) chain were hydroxylated in the X or Y positions of Gly-X-Y triplets.


Assuntos
Colágeno Tipo III/metabolismo , Pichia/genética , Proteínas Recombinantes/metabolismo , Clonagem Molecular , Colágeno Tipo III/química , Colágeno Tipo III/genética , Eletroforese em Gel de Poliacrilamida , Humanos , Hidroxilação , Hidroxiprolina/análise , Hidroxiprolina/química , Plasmídeos , Reação em Cadeia da Polimerase , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
15.
Biotechnol Appl Biochem ; 61(2): 237-47, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24152126

RESUMO

Collagen has been proven to be a valuable biomedical material for many medical applications. Human-like collagen (HLC) is a novel important biomedical material with diverse medical applications. In this work, recombinant Escherichia coli BL21 3.7 ∆ptsG was constructed, the characters of ptsG mutant strain were analyzed, and real-time quantitative polymerase chain reaction (PCR) was applied to investigate the effect of ptsG gene deletion on the transcriptional level of the phosphotransferase system (PTS) genes responsible for glucose transport. The HLC production and cell growth ability were 1.33- and 1.24-fold higher than those of its parent strain in the fermentation medium, respectively, and 1.16- and 1.17-fold in the modified minimal medium individually. The acetate accumulation decreased by 42%-56% compared to its parent strain in the fermentation medium, and 70%-87% in the modified minimal medium. The results of RT-qPCR showed that the transcriptional level of crr, ptsH, ptsI, and blgF in ptsG mutant all decreased dramatically, which inferred a decrease in the glucose uptake rate, but the transcriptional level of FruB and manX increased slightly, which demonstrated the activation of fructose- and mannose-specific transport pathways in the ptsG mutant. This study demonstrates that ptsG deletion is an effective strategy to reduce acetate accumulation and increase biomass and HLC production.


Assuntos
Colágeno/biossíntese , Glucose/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/biossíntese , Colágeno/química , Colágeno/uso terapêutico , Escherichia coli , Fermentação , Humanos , Mutação , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética
16.
Adv Sci (Weinh) ; : e2403626, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38924679

RESUMO

Dislocation of anti-adhesion materials, non-specific tissue adhesion, and the induction of secondary fibrinolysis disorders are the main challenges faced by postoperative anti-adhesion materials. Herein, a self-leveling transient unilateral adhesive hydrogel is custom-designed to conquer these challenges with a theoretically calculated and dual-step tailored gellan gum (GG) as the sole agent. First, the maximum gelation temperature of GG is lowered from 42-25 °C through controlled perturbation of intra- and inter-molecular hydrogen bonds, which is achieved by employing the methacrylic anhydride as a "hydrogen bond's perturbator" to form methacrylate GG (MeGG). Second, the "self-leveling" injectability and wound shape adaptably are endowed by the formation of borate-diol complexed MeGG (BMeGG). Finally, the transient unilateral tissue-adhesive hydrogel (BMeGG-H) barrier is prepared through photo-controlled cross-linking of reactive alkenyl groups. This degradable hydrogel demonstrates favorable rheological properties, light-controlled unilateral adhesion properties, biocompatibility, anti-fibrin adhesion, and anti-cell adhesion properties in vitro. Comprehensive regulation of the fibrinolysis balance toward non-adhesion is conformed in a rat model after intra-abdominal surgery via anti-autoinflammatory response, intestinal wall integrity repair, and Tissue plasminogen activator (t-PA) and plasminogen activator inhibitor-1 (PAI-1) balance adjustment. Notably, the 14th day anti-adhesion effective rate is 100%, indicating its significant potential in clinical applications for postoperative anti-adhesion.

17.
Biomater Sci ; 12(10): 2504-2520, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38529571

RESUMO

In recent years, the design and synthesis of Janus hydrogels have witnessed a thriving development, overcoming the limitations of single-performance materials and expanding their potential applications in tissue engineering and regenerative medicine. Janus hydrogels, with their exceptional mechanical properties and excellent biocompatibility, have emerged as promising candidates for various biomedical applications, including tissue engineering and regenerative therapies. In this review, we present the latest progress in the synthesis of Janus hydrogels using commonly employed preparation methods. We elucidate the surface and interface interactions of these hydrogels and discuss the enhanced properties bestowed by the unique "Janus" structure in biomaterials. Additionally, we explore the applications of Janus hydrogels in facilitating regenerative therapies, such as drug delivery, wound healing, tissue engineering, and biosensing. Furthermore, we analyze the challenges and future trends associated with the utilization of Janus hydrogels in biomedical applications.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Medicina Regenerativa , Engenharia Tecidual , Hidrogéis/química , Materiais Biocompatíveis/química , Humanos , Cicatrização/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Animais
18.
Phytomedicine ; 124: 155287, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176268

RESUMO

BACKGROUND: Non-alcoholic steatohepatitis (NASH) is a prevalent chronic liver disease that lacks an FDA-approved treatment medicine. Despite the known antitumor and hypoglycemic properties of Ginsenoside Rg5, its effects and underlying mechanisms in the context of NASH remain largely unexplored. PURPOSE: This study aims to investigate the effect of Rg5 on NASH mice induced by a high-fat diet and CCl4. STUDY DESIGN: In vivo experiments, a mouse NASH model was established by a HFHC diet plus intraperitoneal injection of low-dose CCl4. In vitro experiments, a cellular steatosis model was established using free fatty acids (FFA) induced HepG2 cells. In addition, a fibrogenesis model was established using HSC-LX2 cells. METHODS: The effects of Ginsenoside Rg5 on lipid accumulation and oxidative damage were analyzed by ELISA kit, H&E staining, Oil Red O staining, flow cytometry and Western blot. The effects of Ginsenoside Rg5 on liver fibrosis were analyzed by Masson staining, Sirus Red staining, immunohistochemistry and Western blot. The effect of Ginsenoside Rg5 on Notch1 signaling pathway in liver was studied by protein Oil Red staining, protein immunoblotting and immunofluorescence. RESULTS: In terms of lipid accumulation, Rg5 has the ability to regulate key proteins related to lipogenesis, thereby inhibiting hepatic lipid accumulation and oxidative stress. Additionally, Rg5 can reduce the occurrence of hepatocyte apoptosis by regulating the p53 protein. Moreover, after Rg5 intervention, the presence of fibrotic proteins (α-SMA, Collagen 1, TGF-ß) in the liver is significantly suppressed, thus inhibiting liver fibrosis. Lastly, Rg5 leads to a decrease in the expression levels of Notch1 and its ligand Jagged-1 in the liver. CONCLUSION: In summary, the regulatory effects of Rg5 on the Notch1 signaling pathway play a crucial role in modulating hepatic lipid metabolism and preventing hepatocyte apoptosis, thereby impeding the progression of NASH. These findings highlight the potential of Rg5 as a promising natural product for interventions targeting NASH.


Assuntos
Ginsenosídeos , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado , Cirrose Hepática/metabolismo , Transdução de Sinais , Células Hep G2 , Dieta Hiperlipídica/efeitos adversos , Apoptose , Lipídeos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
19.
J Pediatr (Rio J) ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38797509

RESUMO

OBJECTIVE: To assess the outcome of patients with cancer-related sepsis requiring continuous renal replacement therapy (CRRT) in a single-center pediatric intensive care unit (PICU). METHOD: Children with sepsis who necessitate CRRT from January 2017 to December 2021 were enrolled. The patients with leukemia/lymphoma or solid tumors were defined as underlying cancer. Multivariate logistic regression analysis was performed to identify the death risk factors in patients with cancer-related sepsis. RESULTS: A total of 146 patients were qualified for inclusion. Forty-six (31.5%) patients with cancer-related sepsis and 100 (68.5%) non-cancer-related sepsis. The overall PICU mortality was 28.1% (41/146), and mortality was significantly higher in cancer-related sepsis patients compared with non-cancer patients (41.3% vs. 22.0%, p = 0.016). Need mechanical ventilation, p-SOFA, acute liver failure, higher fluid overload at CRRT initiation, hypoalbuminemia, and high inotropic support were associated with PICU mortality in cancer-related sepsis patients. Moreover, levels of IL-6, total bilirubin, creatinine, blood urea nitrogen, and international normalized ratio were significantly higher in non-survivors than survivors. In multivariate logistic regression analysis, pediatric sequential organ failure assessment (p-SOFA) score (OR:1.805 [95%CI: 1.047-3.113]) and serum albumin level (OR: 0.758 [95%CI: 0.581 -0.988]) were death risk factors in cancer-related sepsis receiving CRRT, and the AUC of combined index of p-SOFA and albumin was 0.852 (95% CI: 0.730-0.974). CONCLUSION: The overall PICU mortality is high in cancer-related sepsis necessitating CRRT. Higher p-SOFA and lower albumin were independent risk factors for PICU mortality.

20.
J Agric Food Chem ; 72(13): 7100-7120, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38488514

RESUMO

Depression is a neuropsychiatric disease that significantly impacts the physical and mental health of >300 million people worldwide and places a major burden on society. Ginsenosides are the main active ingredient in ginseng and have been proven to have various pharmacological effects on the nervous system. Herein, we investigated the antidepressant effect of ginsenoside Rk3 and its underlying mechanism in a murine model of depression. Rk3 significantly improved depression-like behavior in mice, ameliorated the disturbance of the hypothalamus-pituitary-adrenal axis, and alleviated neuronal damage in the hippocampus and prefrontal cortex of mice. Additionally, Rk3 improved the abnormal metabolism of tryptophan in brain tissue by targeting tryptophan hydroxylase, thereby reducing neuronal apoptosis and synaptic structural damage in the mouse hippocampus and prefrontal cortex. Furthermore, Rk3 reshaped the composition of the gut microbiota of mice and regulated intestinal tryptophan metabolism, which alleviated intestinal barrier damage. Thus, this study provides valuable insights into the role of Rk3 in the tryptophan metabolic cycle along the brain-gut axis, suggesting that Rk3 may have the potential for treating depression.


Assuntos
Ginsenosídeos , Triptofano , Animais , Camundongos , Humanos , Ginsenosídeos/farmacologia , Triptofano Hidroxilase/genética , Eixo Encéfalo-Intestino , Depressão/tratamento farmacológico , Depressão/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA