Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Aquac Nutr ; 2024: 9944159, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38283889

RESUMO

The present study explored the effects of inositol on growth performance, body composition, antioxidant performance, and lipid metabolism of largemouth bass (Micropterus salmoides). Six isonitrogenous and isolipidic diets containing 0 mg/kg (G1, control), 125 mg/kg (G2), 250 mg/kg (G3), 375 mg/kg (G4), 500 mg/kg (G5), and 625 mg/kg (G6) inositol were prepared and fed to cultured fish (initial weight: 110 ± 1 g) for 8 weeks in recirculating the aquaculture systems. The results indicated that compared with G1 group, the weight gain rate (WGR), specific growth rate (SGR), and feed efficiency rate (FER) in the G3 group were significantly higher. The crude lipid content of the whole fish and the liver of cultured fish was significantly reduced with increasing dietary inositol inclusion. However, no significant effects on moisture, crude protein, and ash contents of fish were observed among the different groups. Dietary inositol supplementation significantly increased muscular crude protein. However, muscular total lipid contents were decreased when the inclusion level was higher than 250 mg/kg (G3-G6 groups). As dietary inositol supplemental level increased, serum triglyceride (TG), and cholesterol (TC) contents showed an increasing trend and reached the maximum value in the G3 group. Additionally, serum low-density lipoprotein cholesterol (LDL-C) in G2, G3, G4, and G5 groups was significantly upregulated by increasing inositol. While, there was no significant change in serum high-density lipoprotein cholesterol (HDL-C) among the treatments. Inositol inclusion also significantly reduced the serum alkaline phosphatase (AKP), glutamic-pyruvic transaminase (ALT), and glutamic-oxaloacetic transaminase (AST) activities as well as serum malondialdehyde (MDA) content but significantly increased serum catalase (CAT), superoxide dismutase (SOD) activities, and total antioxidant capacity (T-AOC). Compared with the control group, the activities of hepatic total lipase (TL) and lipoprotein lipase (LPL) were significantly elevated in the G3, G4, and G5 groups. Above all, dietary inositol supplementation could improve growth performance and antioxidant capacity, and reduce the liver fat content of largemouth bass, and the optimal supplementation level of inositol in feed is estimated to be 250.31-267.27 mg/kg.

2.
Environ Sci Pollut Res Int ; 22(4): 2765-75, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25205156

RESUMO

Urban environmental quality in brownfield redevelopment sites is of vital importance after most of former industrial areas were replanned or changed into residential and recreational areas. Hence, it is necessary to rethink if those brownfield redevelopment sites have been cleaned up so that there will be no negative health impacts to local residents. Under such a circumstance, this paper aims to evaluate the contamination level of heavy metals within a brownfield redevelopment site in China, namely, the Tiexi old industrial zone in Shenyang. Surface soil and dust samples were collected from local industrial sites, residential/commercial sites, traffic sites, and recreational sites, respectively. Our analysis results revealed that although the soils in the brownfield redevelopment sites had been treated and remediated, heavy metal pollution still exists in certain sites, especially in the current industrial sites that will be planned into residential/commercial or recreational zones, and the current residential sites where the former industrial sites located, showing that past industrial activities did and will continue to influence the soil quality. Further health risk assessment indicates that As and Pb generated from industrial sites and traffic sites has a potential to pose serious health risks to local residents, especially children. The hotspots with more serious health risks to children are mainly concentrated in the areas close to the former Shenyang Smelting Plant. After one decade of redevelopment, the Tiexi old industrial zone has become a new urban area which is not suitable for large-scaled soil remediation efforts. Thus, the phytoremediation by trees or herbs in heavy-metal-contaminated land is more appropriate and should be embedded into urban green land planning. This study provides innovative policy insights on urban brownfield redevelopment to both governmental officials and related stakeholders so that they can make appropriate remediation actions.


Assuntos
Poeira/análise , Metais Pesados/análise , Poluentes do Solo/análise , Biodegradação Ambiental , China , Humanos , Indústrias , Medição de Risco , Solo/química , Reforma Urbana
3.
Environ Sci Pollut Res Int ; 22(23): 18687-98, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26182884

RESUMO

With the rapid economic development, energy consumption of China has been the second place in the world next to the USA. Usually, measuring energy consumption intensity or efficiency applies heat unit which is joule per gross domestic production (GDP) or coal equivalent per GDP. However, this measuring approach is only oriented by the conversion coefficient of heat combustion which does not match the real value of the materials during their formation in the ecological system. This study applied emergy analysis to evaluate the energy consumption intensity to fill this gap. Emergy analysis is considered as a bridge between ecological system and economic system, which can evaluate the contribution of ecological products and services as well as the load placed on environmental systems. In this study, emergy indicator for performing energy consumption intensity of primary energy was proposed. Industrial production is assumed as the main contributor of energy consumption compared to primary and tertiary industries. Therefore, this study validated this method by investigating the two industrial case studies which were Dalian Economic Development Area (DEDA) and Fuzhou economic and technological area (FETA), to comparatively study on their energy consumption intensity between the different kinds of industrial systems and investigate the reasons behind the differences. The results show that primary energy consumption (PEC) of DEDA was much higher than that of FETA during 2006 to 2010 and its primary energy consumption ratio (PECR) to total emergy involvement had a dramatically decline from year 2006 to 2010. In the same time, nonrenewable energy of PEC in DEDA was also much higher than that in FETA. The reason was that industrial structure of DEDA was mainly formed by heavy industries like petro-chemistry industry, manufacturing industries, and high energy-intensive industries. However, FETA was formed by electronic business, food industry, and light industries. Although the GDP of DEDA was much higher than that of FETA, its energy intensity was higher as well. Through the 5-year development, energy consumption intensity in DEDA made a significant reduction from 3.90E+16 seJ/$ to 1.84E+16 seJ/$, which was attributed by the improvement of industrial structure, construction of eco-industrial park and circular economic industrial park. The proposed emergy indicator for demonstrating energy consumption intensity overcame the weakness that the indicator was only transformed from the heat burning. Therefore, this study shows an optional way to measure energy consumption intensity from the perspective of material ecological contribution.


Assuntos
Conservação dos Recursos Naturais , Indústrias/estatística & dados numéricos , China , Ecologia , Desenvolvimento Econômico , Ecossistema , Produto Interno Bruto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA