Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 20(31): e2311332, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38431963

RESUMO

Aqueous zinc-ion batteries (AZIBs) are considered a promising device for next-generation energy storage due to their high safety and low cost. However, developing high-performance cathodes that can be matched with zinc metal anodes remains a challenge in unlocking the full potential of AZIBs. In this study, a typical transition metal layered double hydroxides (NiCo-LDHs) can be in situ reconstructed to NiCo-LDHs/Ni(Co)OOH heterostructure using an electrochemical cycling activation (ECA) method, serving as a novel cathode material for AZIBs. The optimized ECA-NiCo-LDHs cathode demonstrates a high capacity of 181.5 mAh g-1 at 1 A g-1 and retains 75% of initial capacity after 700 cycles at 5 A g-1. The abundant heterointerfaces of the NiCo-LDHs/Ni(Co)OOH material can activate additional active sites for zinc-ion storage and accelerate ion diffusion. Theoretical calculations also suggest the heterostructure can boost charge transfer and regulate ion-adsorption capability, thereby improving the electrochemical performance. Additionally, the flexible AZIBs device exhibits good service performance. This study on interface engineering introduces a new possibility for utilizing LDHs in AZIBs and offers a novel strategy for designing electrode materials.

2.
Small ; 19(46): e2304265, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37469204

RESUMO

Bismuth (Bi) has attracted attention as a promising anode for sodium-ion batteries (SIBs) owing to its suitable potential and high theoretical capacity. However, the large volumetric changes during cycling leads to severe degradation of electrochemical performance and limits its practical application. Herein, Bi nanoflowers are encapsulated in N-doped carbon frameworks to construct a novel Bi@NC composite via a facile solvothermal method and carbonization strategy. The well-designed composite structure endows the Bi@NC with uniformly dispersed Bi nanoflowers to alleviate the attenuation while the N-doped carbon frameworks improve the conductivity and ion transport of the whole electrode. As for sodium-ion half-cell, the electrode exhibits a high specific capacity (384.8 mAh g-1 at 0.1 A g-1 ) and excellent rate performance (341.5 mAh g-1 at 10 A g-1 ), and the capacity retention rate still remains at 94.9% after 5000 cycles at 10 A g-1 . Furthermore, the assembled full-cell with Na3 V2 (PO4 )3 cathode and Bi@NC anode can deliver a high capacity of 251.5 mAh g-1 at 0.1 A g-1 , and its capacity attenuates only 0.009% in each cycle after 2000 times at 5.0 A g-1 . This work offers a convenient, low-cost, and eco-friendliness approach for high-performance electrodes in the field of sodium ion electrochemical storage technology.

3.
J Colloid Interface Sci ; 666: 210-220, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593655

RESUMO

Engineering platinum-free catalysts for hydrogen evolution reaction (HER) with high activity and stability is essential for electrochemical hydrogen production. In this paper, we report the synthesis of cobalt-doped AlNi3/NiO (Co-AlNi3/NiO) electrode with three-dimensional nanoporous structure via chemical dealloying method. Density functional theory (DFT) calculations reveal that Co-AlNi3/NiO can accelerate water adsorption / dissociation and optimize adsorption-desorption energies of H* intermediates, thus improving the intrinsic HER activity. Both the introduction of Co and Al can efficiently ameliorate the electronic density around Ni sites of NiO and AlNi3, which can effectively reduce the energy barrier towards Volmer-Heyrovsky reaction and thus synergistically promote the hydrogen evolution. Benefiting from the large electrochemical active surface area, high electrical conductivity and electronic effect, the nanoporous Co-AlNi3/NiO catalyst exhibits remarkable HER activity with an overpotential of 73 mV at a current density of 10 mA cm-2 in alkaline condition, outperforming most of the reported non-precious metal catalysts. The nanoporous Co-AlNi3/NiO catalyst can operate continuously over 1000 h at high current densities with a robust stability. This work provides a new vision for the development of low-cost and efficient electrocatalysts for energy conversion applications.

4.
J Colloid Interface Sci ; 642: 800-809, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37043938

RESUMO

The oxygen reduction reaction (ORR) is important cathodic reaction running in several electrochemical energy conversion devices. It is still difficult to develop non-precious nanocatalysts for ORR that have high activity and increased durability for practical application. Herein, bimetallic FeMn(mIm)-N-C composite incorporated with Fe and Mn via an encapsulation-ligand exchange technique is prepared and established as an efficient ORR catalyst. The results reveal that FeMn(mIm)-N-C shows outstanding ORR performance with E1/2 of 0.861 V and 0.778 V in alkaline and acid solutions, along with robust durability. Additionally, the assembled Zn-Air batteries (ZAB) and proton exchange membrane fuel cells (PEMFCs) both have exceptional power densities and show promise for long-term stability compared to 20% Pt/C. The present work provides a useful strategy for designing and synthesizing a reliable low-cost and high-efficient electrocatalysts for energy conversion and storage.

5.
Dalton Trans ; 50(20): 6975-6981, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33929472

RESUMO

Developing efficient and stable electrocatalysts for ammonia synthesis via the nitrogen reduction reaction (NRR) is essential for the Earth's nitrogen cycle. Herein, a palladium nanocrystals anchored carbon fibers (PdNCs@CNFs) composite was prepared via electrospinning and carbonization processes. X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterization studies show that the as-prepared Pd grains are homogeneously anchored on the outer/inner section of the carbon nanofibers. Benefiting from the sufficient exposure and stress effect of active sites, the resultant PdNCs@CNFs achieves a high Faraday efficiency of ∼14.8% with a current density of 0.028 mA cm-2 at -0.2 V vs. reversible hydrogen electrode (RHE) in 0.1 M Na2SO4 solution, surpassing those of many catalysts previously reported. Density functional theory (DFT) calculations reveal that the rationality of the distal associative mechanism on PdNCs@CNFs and Pd nanocrystals on the surface of PdNCs@CNFs is more favorable for nitrogen (N2) molecule adsorption and polarization.

6.
ChemSusChem ; 14(22): 5065-5074, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34546664

RESUMO

Highly active bifunctional electrocatalysts for water splitting are of particular importance for the widespread usage of renewable energy, which require synergistic effect of ingenious architecture and intrinsic catalytic activity. Herein, a novel Cu-Co-Se nanotube array supported on 3D copper skeleton was synthesized as high-efficiency bifunctional electrocatalyst for overall water splitting via a facile two-step hydrothermal method. The rationally designed Cu-Co-Se nanotube electrocatalyst exhibited good electrocatalytic performance, with overpotential of only 152 mV to generate 10 mA cm-2 for the hydrogen evolution reaction and a small overpotential of 332 mV to drive a current density of 50 mA cm-2 for the oxygen evolution reaction. The good electrocatalytic performance was mainly due to the large electrochemical surface area and electronic coupling synergies triggered by the self-supported bimetallic nanotube architecture. The water splitting system assembled using Cu-Co-Se nanotube as cathode and anode only needed a cell voltage of 1.65 V to drive a current density of 10 mA cm-2 with long durability of 50 h for overall water splitting. Furthermore, density functional theory calculations proved that the existence of electron exchange between the neighboring bimetals as well as the coupling between Cu, Co, and Se contributed to the improvement of the water splitting performance. This work provides a general strategy to develop cost-efficient and geometrically superior bimetallic electrocatalysts toward water splitting for large-scale hydrogen production.

7.
ChemSusChem ; 13(14): 3662-3670, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32329249

RESUMO

The development of highly active and efficient nonprecious-metal electrocatalysts for the oxygen evolution reaction is important for the design of renewable energy production and storage devices. In this work, highly dense, ultrathin Co-Ni boride nanoflakes supported on a 3 D CoNi skeleton are fabricated in situ by a simple one-step, high-temperature, solid-state boronation process. As a result of the induced high electroactive surface area and low charge transfer resistance, CoNiB-700 exhibits high catalytic activity at an overpotential of 262 (η10 ) and 284 mV (η20 ) to deliver current densities of 10 and 20 mA cm-2 , respectively, with a Tafel slope of 58 mV dec-1 in an alkaline medium towards the oxygen evolution reaction. DFT calculations show that the Ni-regulated Co-B compound has a lower rate-determining energy barrier for the *OOH intermediate than the mono-Co-B compound, which facilitates the production of more active catalytic sites for an accelerated surface charge-transfer process for the oxygen evolution reaction.

8.
ACS Appl Mater Interfaces ; 11(1): 889-897, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30560657

RESUMO

In the present work, we report a ternary WO3/BiVO4/ZnO photoanode with boosted PEC efficiency and stability toward highly efficient water splitting. The type-II WO3/BiVO4 heterojunction arrays are firstly prepared by hydrothermal growth of WO3 nanoplate arrays onto the substrates of fluorine-doped tin oxide (FTO)-coated glass, followed by spin-coating of BiVO4 layers onto the WO3 nanoplate surfaces. After that, thin ZnO layers are further introduced onto the WO3/BiVO4 heterojunction arrays via atomic layer deposition (ALD), leading to the construction of ternary WO3/BiVO4/ZnO photoanodes. It is verified that the ZnO thin layer in the WO3/BiVO4/ZnO photoanode contains abundant oxygen vacancies, which could act as an effective passivation layer to enhance the charge separation and surface water oxidation kinetics of photogenerated carriers. The as-prepared WO3/BiVO4/ZnO photoanode produces a photocurrent of 2.96 mA cm-2 under simulated sunlight with an incident photon-to-current conversion efficiency (IPCE) of ∼72.8% at 380 nm at a potential of 1.23 V versus RHE without cocatalysts, both of which are comparable to the state-of-the-art WO3/BiVO4 counterparts. Moreover, the photocurrent of the WO3/BiVO4/ZnO photoanode shows only 9% decay after 6 h, suggesting its high photoelectrochemical (PEC) stability.

9.
J Colloid Interface Sci ; 511: 355-364, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29031959

RESUMO

In this work, we report a novel well-dispersed palladium nanoparticles (PdNPs)/nickel-phosphorus nanosheets (Ni-P NSs) synthesized by combination of red phosphorous phosphorization and simple electrodeposition technique. The obtained PdNPs/Ni-P nanosheets framework with large electrochemical active surface would not only exhibit much superior electrocatalytic activity (180.5±3.07mAcm-2) toward glucose oxidation reaction, but also represent a wide linear range (2µM-4.65mM) and high sensitive detection of glucose (242.5±3.28µAmM-1cm-2) as non-enzymatic glucose sensor. The three- dimensional (3D) PdNPs/Ni-P nanosheets have a promising prospect as a novel kind of highly active nanocatalyst and non-enzymatic electrochemical sensor.

10.
ACS Appl Mater Interfaces ; 10(3): 2430-2441, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29297222

RESUMO

In this study, a novel three-dimensional self-supported ternary NiS-Ni9S8-NiSe nanorod (NR) array cathode has been successfully in situ constructed by a two-step hydrothermal route. When applied to hydrogen evolution, the synthesized NiS-Ni9S8-NiSe-NR electrode demonstrates optimized electrocatalytic activity and long-term durability, only requiring overpotentials as low as 120 and 112 mV to drive 10 mA cm-2 for hydrogen evolution reaction in 0.5 M H2SO4 and 1.0 M KOH, respectively. Density functional theory calculation reveals that after Se doping Se 3d orbitals are bonded to Ni 3d orbitals and S p orbitals near Fermi level, attesting a significant electron transfer between nickel and selenium atoms. The success of enhancing the electrocatalytic performance via introducing the Se dopant holds great promise for the potential optimization of other transition-metal compounds in highly efficient electrochemical water splitting for large-scale hydrogen production.

11.
J Colloid Interface Sci ; 468: 200-210, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26851453

RESUMO

A series of trimetallic PdSnPtx (x=0.1-0.7)/C catalysts with varied Pt content have been synthesized by co-reduction method using NaBH4 as a reducing agent. These catalysts were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV) and chronoamperometry (CA). The electrochemical results show that, after adding a minor amount of Pt dopant, the resultant PdSnPtx/C demonstrated more superior catalytic performance toward ethanol oxidation as compared with that of mono-/bi-metallic Pd/C or PdSn/C in alkaline solution and the PdSnPt0.2/C with optimal molar ratio reached the best. In acid solution, the PdSnPt0.2/C also depicted a superior catalytic activity relative to the commercial Pt/C catalyst. The possible enhanced synergistic effect between Pd, Sn/Sn(O) and Pt in an alloyed state should be responsible for the as-revealed superior ethanol electro-oxidation performance based upon the beneficial electronic effect and bi-functional mechanism. It implies the trimetallic PdSnPt0.2/C with a low Pt content has a promising prospect as anodic electrocatalyst in fields of alkali- and acid-type direct ethanol fuel cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA