Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(17)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39274607

RESUMO

Blue-emitting bismuth-doped lanthanum oxide (La2O3: Bi3+) with various concentrations of Bi was synthesized using the sol-gel combustion method and used for visualization of latent fingerprints (LFPs). An X-ray diffraction (XRD) study revealed the hexagonal structure of the phosphors and total incorporation of the bismuth in the La2O3 matrix. Field Emission Scanning Electron Microscopy (FE-SEM) and Fourier Transform Infrared Spectroscopy (FTIR) were used to study the morphology and the relative vibrations of the synthesized samples. Photoluminescence (PL) studies showed strong blue emission around 460 nm due to the 3P1 → 1S0 transition. Clear bright-blue fingerprint images were obtained with the powder dusting method on various surfaces like aluminum, compact discs, glass, wood and marble. A first evaluation of these images indicated a clear visualization of all three levels of details and a very high contrast ranging from 0.41 on marble to 0.90 on aluminum. As a further step, we used an algorithm for extracting fingerprint minutiae with which we succeeded in detecting all three levels of fingerprint details and even the most difficult ones, like open and closed pores. According to these analyses, La2O3: Bi phosphor is demonstrated to be an effective blue fluorescent powder for excellent visualization of latent fingerprints.

2.
Materials (Basel) ; 17(17)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39274578

RESUMO

A glass composition using TeO2-K2TeO3-Nb2O5-BaF2 co-doped with Er2O3/Ho2O3 and Er2O3/Yb2O3 was successfully fabricated. Its thermal stability and physical parameters were studied, and luminescence spectroscopy of the fabricated glasses was conducted. The optical band gap, Eopt, decreased from 2.689 to 2.663 eV following the substitution of Ho2O3 with Yb2O3. The values of the refractive index, third-order nonlinear optical susceptibility (χ(3)), and nonlinear refractive index (n2) of the fabricated glasses were estimated. Furthermore, the Judd-Ofelt intensity parameters Ωt (t=2,4,6), radiative properties such as transition probabilities (Aed), magnetic dipole-type transition probabilities (Amd), branching ratios (ß), and radiative lifetime (τ) of the fabricated glasses were evaluated. The emission cross-section and FWHM of the 4I13/2→4I15/2 transition around 1.54 µm of the glass were reported, and the emission intensity of the visible signal was studied under 980 nm laser excitation. The material might be a useful candidate for solid lasers and nonlinear amplifier devices, especially in the communications bands.

3.
Materials (Basel) ; 17(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39124381

RESUMO

The thermal and optical properties of 60TeO2-20K2TeO3-10WO3-10Nb2O5 (in mol%) glasses doped with Ho2O3, Er2O3, and Tm2O3 were explored in the present work. The thermal stability, refractive index n, extinction coefficient k, absorption coefficient α, and optical band gap of the glasses were evaluated. The UV-Vis-NIR absorption spectra, the Judd-Ofelt intensity parameter, the spectroscopic quality factor, and the emission and absorption cross-sections were calculated to investigate the effects of Er3+ and Tm3+, respectively, on the band spectroscopic properties of Ho3+ ions. The results showed that the maximum emission cross-section was approximately 8×10-21 cm2, and the values of the full width at half maximum (FWHM), quality factor (σe×FWHM), and gain coefficient of Ho3+: 5I7→5I8 were also reported. The value of the FWHM×σe was 1200×10-28 cm3, which showed greater gain characteristics than earlier study results. For 2 µm mid-infrared solid-state lasers, the glasses that were examined might be a good host material.

4.
Materials (Basel) ; 16(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36676301

RESUMO

Peralkaline Sm3+-doped aluminosilicate glasses with different network modifier ions (Mg2+, Ca2+, Sr2+, Ba2+, Zn2+) were investigated to clarify the effect of glass composition and glass structure on the optical properties of the doped Sm3+ ions. For this purpose, the Sm3+ luminescence emission spectra were correlated with the molecular structure of the glasses derived by molecular dynamics (MD) simulations. The different network modifier ions have a clear and systematic effect on the peak area ratio of the Sm3+ emission peaks which correlates with the average rare earth site symmetry in the glasses. The highest site symmetry is found for the calcium aluminosilicate glass. Glasses with network modifier ions of lower and higher ionic radii show a notably lower average site symmetry. The symmetry could be correlated to the rare earth coordination number with oxygen atoms derived by MD simulations. A coordination number of 6 seems to offer the highest average site symmetry. Higher rare earth coordination probabilities with non-bridging oxygen result in an increased splitting of the emission peaks and a notable broadening of the peaks. The zinc containing glass seems to play a special role. The Zn2+ ions notably modify the glass structure and especially the rare earth coordination in comparison to the other network modifier ions in the other investigated glasses. The knowledge on how glass structure affects the optical properties of doped rare earth ions can be used to tailor the rare earth absorption and emission spectra for specific applications.

5.
Materials (Basel) ; 15(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35407757

RESUMO

Undoped Y2Sn2O7 and Eu3+ doped Y2Sn2O7 samples with doping concentrations 7%, 8%, 9%, and 10% are successfully synthesized by the co-precipitation method. A complete structural, morphological, and spectroscopic characterization is carried out. XRD measurements reveal that samples crystallize in the pure single pyrochlore phase and Eu3+ ions occupy sites with D3d symmetry. After mechanical grinding, the average crystallite size is less than 100 nm for all compositions. Optical characterization shows emission from the 5D0 level towards the lower lying 7F0,1,2,3,4 levels. The CIE color coordinates of all the pyrochlore phosphors are very close to those of the ideal red light. For the visualization of latent fingerprints, different surfaces are tested, including difficult ones (wood and ceramic), with excellent results. All three levels of fingerprint ridge patterns are visualized: core (Level 1), bifurcation and termination (Level 2), and sweat pores (Level 3). Moreover, our nano-powders are used to prepare a stable fluorescent ink.

6.
Materials (Basel) ; 15(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36233860

RESUMO

In the optical energy gap, visible and near-IR emission of halide phosphate glasses with a composition of 40P2O5-30ZnO-20LiCl-10BaF2 in mol% doped with 3.5 × 104 ppm Pr2O3, referred to as PZLBPr, were synthesized. The UV-VIS-NIR and spectroscopic properties of these glasses were also predicted. The current glasses had broadband emission photoluminescence covering a wavelength range of 1250 to 1700 nm when excited at 455 nm. These bands for near-infrared emission luminescence relate to the transitions 1G4 → 3H5, 1D2 → 1G4, and 3H4 → 3F3, 3F4 in the optical telecommunication window. The significant PL emission wideband was caused by the radiative transition from Pr3+: 1D2 to 1G4. At 445 nm excitation, these glasses exhibited emission bands that corresponded to blue/reddish orange spectral ranges in visible ranges. The prepared glass has a high lasing quality factor (Ω4/Ω6 = 0.9), high optical energy (4.72 eV), and quantum efficiency = 87.3% with FWHM = 156 nm of transition emission from the 1D2 → 1G4 level. As a result, broadband near infrared optical amplifiers can be fabricated from the prepared glasses.

7.
Materials (Basel) ; 14(12)2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204847

RESUMO

Understanding the atomic structure of glasses is critical for developing new generations of materials with important technical applications. In particular, the local environment of rare-earth ions and their distribution and clustering is of great relevance for applications of rare earth-containing glasses in photonic devices. In this work, the structure of Gd2O3 doped lithium and potassium aluminosilicate glasses is investigated as a function of their network modifier oxide (NMO-Li2O, K2O) to aluminum oxide ratio using molecular dynamics simulations. The applied simulation procedure yields a set of configurations, the so-called inherent structures, of the liquid state slightly above the glass transition temperature. The generation of a large set of inherent structures allows a statistical sampling of the medium-range order of the Gd3+ ions with less computational effort compared to other simulation methods. The resulting medium-range atomic structures of network former and modifier ions are in good agreement with experimental results and simulations of similar glasses. It was found that increasing NMO/Al ratio increases the network modifier coordination number with non-bridging oxygen sites and reduces the overall stability of the network structure. The fraction of non-bridging oxygen sites in the vicinity of Gd3+ ions increases considerably with decreasing field strength and increasing concentration of the network modifier ions. These correlations could be confirmed even if the simulation results of alkaline earth aluminosilicate glasses are added to the analysis. In addition, the structure predictions generally indicate a low driving force for the clustering of Gd3+. Here, network modifier ions of large ionic radii reduce the probability of Gd-O-Gd contacts.

8.
Polymers (Basel) ; 14(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35012054

RESUMO

Descriptors derived from atomic structure and quantum chemical calculations for small molecules representing polymer repeat elements were evaluated for machine learning models to predict the Hildebrand solubility parameters of the corresponding polymers. Since reliable cohesive energy density data and solubility parameters for polymers are difficult to obtain, the experimental heat of vaporization ΔHvap of a set of small molecules was used as a proxy property to evaluate the descriptors. Using the atomistic descriptors, the multilinear regression model showed good accuracy in predicting ΔHvap of the small-molecule set, with a mean absolute error of 2.63 kJ/mol for training and 3.61 kJ/mol for cross-validation. Kernel ridge regression showed similar performance for the small-molecule training set but slightly worse accuracy for the prediction of ΔHvap of molecules representing repeating polymer elements. The Hildebrand solubility parameters of the polymers derived from the atomistic descriptors of the repeating polymer elements showed good correlation with values from the CROW polymer database.

9.
Methods Appl Fluoresc ; 9(2): 025002, 2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33445168

RESUMO

A series of green emitting Gd2O3:Tb3+ (Tb: 0%-10% mol) nanoparticles (NP) were synthesized using the hydrothermal method, then characterized and evaluated for latent fingerprint visualization. X-ray diffraction study (XRD) revealed a cubic structure of the nanoparticles and the total incorporation of the terbium in the Gd2O3 matrix. Field Emission-Scanning Electron Microscopy (FESEM), Energy Dispersive x-ray Spectrometry (EDX) and Transmission Electron Microscopy (TEM) were used to study the morphology and the elementary composition of the NP. Photoluminescence (PL) studies showed strong green emission around 540 nm due to the transition 5D4 â†’ 7F5. The luminescence color of the synthesized NP was characterized by the CIE 1931 chromaticity diagram. The potential use of the NP powders for the visualization of latent fingerprint under UV irradiation was assessed on various substrates. The latent fingerprint images revealed by the Gd2O3:Tb3+ NP powders are clear enough to extract and analyze reliable fingerprint features. The fingerprint quality was evaluated using three fingerprint quality assessment metrics and by extracting and measuring the visibility of the minutiae. The experimental results show very good quality images of the latent fingerprint acquired using the Gd2O3:Tb3+ NP and yield good minutiae extraction.

10.
Materials (Basel) ; 11(10)2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30241314

RESUMO

The medium-range atomic structure of magnesium and barium aluminosilicate glasses doped with Gd2O3 as a model rare earth oxide is elucidated using molecular dynamics simulations. Our structure models rationalize the strong dependence of the luminescence properties of the glasses on their chemical composition. The simulation procedure used samples' atomic configurations, the so-called inherent structures, characterizing configurations of the liquid state slightly above the glass transition temperature. This yields medium-range atomic structures of network former and modifier ions in good agreement with structure predictions using standard simulated annealing procedures. However, the generation of a large set of inherent structures allows a statistical sampling of the medium-range order of Gd3+ ions with less computational effort compared to the simulated annealing approach. It is found that the number of Si-bound non-bridging oxygen in the vicinity of Gd3+ considerably increases with growing ionic radius and concentration of network-modifier ions. In addition, structure predictions indicate a low driving force for clustering of Gd3+, yet no precise correlation between the atomic structure and luminescence lifetimes can be conclusively established. However, the structure models provided in this study can serve as a starting point for future quantum mechanical simulations to shed a light on the relation between the atomic structure and optical properties of rare earth doped aluminosilicate glasses.

11.
Nanoscale Res Lett ; 10: 215, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26034414

RESUMO

We synthesized Gd2O3 and Gd2O3 doped by europium (Eu) (2% to 10%) nanoplatelets using the polyol chemical method. The synthesized nanoplatelets were characterized by X-ray diffraction (XRD), FESEM, TEM, and EDX techniques. The optical properties of the synthesized nanoplatelets were investigated by photoluminescence spectroscopy. We also studied the magnetic resonance imaging (MRI) contrast enhancement of T1 relaxivity using 3 T MRI. The XRD for Gd2O3 revealed a cubic crystalline structure. The XRD of Gd2O3:Eu(3+) nanoplatelets were highly consistent with Gd2O3 indicating the total incorporation of the Eu(3+) ions in the Gd2O3 matrix. The Eu doping of Gd2O3 produced red luminescence around 612 nm corresponding to the radiative transitions from the Eu-excited state (5)D0 to the (7)F2. The photoluminescence was maximal at 5% Eu doping concentration. The stimulated CIE chromaticity coordinates were also calculated. Judd-Ofelt analysis was used to obtain the radiative properties of the sample from the emission spectra. The MRI contrast enhancement due to Gd2O3 was compared to DOTAREM commercial contrast agent at similar concentration of gadolinium oxide and provided similar contrast enhancement. The incorporation of Eu, however, decreased the MRI contrast due to replacement of gadolinium by Eu.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA