Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur J Neurosci ; 54(12): 8381-8395, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33185920

RESUMO

It has been stated that active-transmission electrodes should improve signal quality in mobile EEG recordings. However, few studies have directly compared active- and passive-transmission electrodes during a mobile task. In this repeated measurement study, we investigated the performance of active and passive signal transmission electrodes with the same amplifier system in their respective typical configurations, during a mobile auditory task. The task was an auditory discrimination (1,000 vs. 800 Hz; counterbalanced) oddball task using approximately 560 trials (15% targets) for each condition. Eighteen participants performed the auditory oddball task both while standing and walking in an outdoor environment. While walking, there was a significant decrease in P3 amplitude, post-trial rejection trial numbers, and signal-to-noise ratio (SNR). No significant differences were found in signal quality between the two electrode configurations. SNR and P3 amplitude were test-retest reliable between recordings. We conclude that adequate use of a passive EEG electrode system achieves signal quality equivalent to that of an active system during a mobile task.


Assuntos
Eletroencefalografia , Caminhada , Percepção Auditiva , Eletrodos , Humanos
2.
Data Brief ; 46: 108847, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36687153

RESUMO

This article describes a dataset from one standing and two outdoor walking tasks. Each task was performed by the same 18 participants twice, using foot accelerometers and two different EEG system configurations. The first task was a brief eyes open/eyes closed task. The second task was a six minute auditory oddball task performed in three conditions: Standing, walking alone and walking next to an experimenter. In the third task, the participants walked with the experimenter in three conditions: With their view of the experimenter blocked, walking naturally, and trying to synchronize their steps with the experimenter. During all walking conditions which included the experimenter, the experimenter walked following a headphone metronome to keep their steps consistent, also wearing a foot accelerometer. All tasks were performed twice on two separate days, using active electrode and passive electrode EEG configurations (Brain Products, GmbH). Data was used for Scanlon et al. (2021) and Scanlon et al. (2022), and could be used for learning about attention, walking mechanisms and social neuroscience. Scanlon, J. E., Jacobsen, N. S. J., Maack, M. C., & Debener, S. (2021). Does the electrode amplification style matter? A comparison of active and passive EEG system configurations during standing and walking. European Journal of Neuroscience, 54(12), 8381-8395. Scanlon, J. E. M., Jacobsen, N. S. J., Maack, M. C., & Debener, S. (2022). Stepping in time: Alpha-mu and beta oscillations during a walking synchronization task. NeuroImage, 253, 119099.

3.
Sci Rep ; 12(1): 18717, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333393

RESUMO

Learning, rendered in an implicit (unconscious) or explicit (conscious) way, is a crucial part of our daily life. Different factors, like attention or motivation, influence the transformation from implicit to explicit memory. Via virtual reality a lively and engaging surrounding can be created, whereby motivational processes are assumed to be a vital part of the transition from implicit to explicit memory. In the present study, we tested the impact of an enriched virtual reality compared to two conventional, non-enriched 2D-computer-screen based tasks on implicit to explicit memory transformation, using an audio-visual sequential association task. We hypothesized, that the immersive nature of the VR surrounding enhances the transfer from implicit to explicit memory. Notably, the overall amount of learned sequence pairs were not significantly different between experimental groups, but the degree of awareness was affected by the different settings. However, we observed an increased level of explicitly remembered pairs within the VR group compared to two screen-based groups. This finding clearly demonstrates that a near-natural experimental setting affects the transformation process from implicit to explicit memory.


Assuntos
Aprendizagem , Memória , Rememoração Mental , Estado de Consciência , Atenção
4.
Nat Commun ; 10(1): 5427, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31780668

RESUMO

Transcranial electrical stimulation (tES) of the brain can have variable effects, plausibly driven by individual differences in neuroanatomy and resulting differences of the electric fields inside the brain. Here, we integrated individual simulations of electric fields during tES with source localization to predict variability of transcranial alternating current stimulation (tACS) aftereffects on α-oscillations. In two experiments, participants received 20-min of either α-tACS (1 mA) or sham stimulation. Magnetoencephalogram (MEG) was recorded for 10-min before and after stimulation. tACS caused a larger power increase in the α-band compared to sham. The variability of this effect was significantly predicted by measures derived from individual electric field modeling. Our results directly link electric field variability to variability of tACS outcomes, underline the importance of individualizing stimulation protocols, and provide a novel approach to analyze tACS effects in terms of dose-response relationships.


Assuntos
Ritmo alfa/fisiologia , Encéfalo/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto , Variação Biológica da População , Encéfalo/diagnóstico por imagem , Campos Eletromagnéticos , Feminino , Humanos , Imageamento por Ressonância Magnética , Magnetoencefalografia , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA