Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38279243

RESUMO

Multiple studies have shown that cell-free DNA (cfDNA) from cancer patients differ in both fragment length and fragment end motif (FEM) from healthy individuals, yet there is a lack of understanding of how the two factors combined are associated with cancer and gene transcription. In this study, we conducted cfDNA fragmentomics evaluations using plasma from lung cancer patients (n = 12) and healthy individuals (n = 7). A personal gene expression profile was established from plasma using H3K36me3 cell-free chromatin immunoprecipitation sequencing (cfChIP-seq). The genes with the highest expression displayed an enrichment of short cfDNA fragments (median = 19.99%, IQR: 16.94-27.13%, p < 0.0001) compared to the genes with low expression. Furthermore, distinct GC-rich FEMs were enriched after cfChIP. Combining the frequency of short cfDNA fragments with the presence of distinct FEMs resulted in an even further enrichment of the most expressed genes (median = 37.85%, IQR: 30.10-39.49%, p < 0.0001). An in vitro size selection of <150 bp cfDNA could isolate cfDNA representing active genes and the size-selection enrichment correlated with the cfChIP-seq enrichment (Spearman r range: 0.499-0.882, p < 0.0001). This study expands the knowledge regarding cfDNA fragmentomics and sheds new light on how gene activity is associated with both cfDNA fragment lengths and distinct FEMs.


Assuntos
Ácidos Nucleicos Livres , Neoplasias Pulmonares , Humanos , Biópsia Líquida , Neoplasias Pulmonares/genética , Biomarcadores Tumorais/genética
2.
BMC Bioinformatics ; 24(1): 131, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37016288

RESUMO

BACKGROUND: EML4-ALK gene fusions are oncogenic drivers in non-small cell lung cancer (NSCLC), and liquid biopsies containing EML4-ALK fragments can be used to study tumor dynamics using next-generation sequencing (NGS). However, the sensitivity of EML4-ALK detection varies between pipelines and analysis tools. RESULTS: We developed an R/Bioconductor package, DNAfusion, which can be applied to BAM files generated by commercially available NGS pipelines, such as AVENIO. Forty-eight blood samples from a training cohort consisting of 41 stage IV EML4-ALK-positive NSCLC patients and seven healthy controls were used to develop DNAfusion. DNAfusion detected EML4-ALK in significantly more samples (sensitivity = 61.0%) compared to AVENIO (sensitivity = 36.6%). The newly identified EML4-ALK-positive patients were verified using droplet digital PCR. DNAfusion was subsequently validated in a blinded validation cohort comprising 24 EML4-ALK-positive and 24 EML4-ALK-negative stage IV NSCLC patients. DNAfusion detected significantly more EML4-ALK individuals in the validation cohort (sensitivity = 62.5%) compared to AVENIO (sensitivity = 29.2%). DNAfusion demonstrated a specificity of 100% in both the training and validation cohorts. CONCLUSION: Here we present DNAfusion, which increases the sensitivity of EML4-ALK detection in liquid biopsies and can be implemented downstream of commercially available NGS pipelines. The simplistic method of operating the R package makes it easy to implement in the clinical setting, enabling wider expansion of NGS-based diagnostics.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Receptores Proteína Tirosina Quinases , Biópsia Líquida
3.
Transl Lung Cancer Res ; 12(1): 42-65, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36762066

RESUMO

Background: Epithelial-mesenchymal-transition (EMT) is an epigenetic-based mechanism contributing to the acquired treatment resistance against receptor tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer (NSCLC) cells harboring epidermal growth factor receptor (EGFR)-mutations. Delineating the exact epigenetic and gene-expression alterations in EMT-associated EGFR TKI-resistance (EMT-E-TKI-R) is vital for improved diagnosis and treatment of NSCLC patients. Methods: We characterized genome-wide changes in mRNA-expression, DNA-methylation and the histone-modification H3K36me3 in EGFR-mutated NSCLC HCC827 cells in result of acquired EMT-E-TKI-R. CRISPR/Cas9 was used to functional examine key findings from the omics analyses. Results: Acquired EMT-E-TKI-R was analyzed with three omics approaches. RNA-sequencing identified 2,233 and 1,972 up- and down-regulated genes, respectively, and among these were established EMT-markers. DNA-methylation EPIC array analyses identified 14,163 and 7,999 hyper- and hypo-methylated, respectively, differential methylated positions of which several were present in EMT-markers. Finally, H3K36me3 chromatin immunoprecipitation (ChIP)-sequencing detected 2,873 and 3,836 genes with enrichment and depletion, respectively, and among these were established EMT-markers. Correlation analyses showed that EMT-E-TKI-R mRNA-expression changes correlated better with H3K36me3 changes than with DNA-methylation changes. Moreover, the omics data supported the involvement of the MIR141/MIR200C-ZEB1/ZEB2-FGFR1 signaling axis for acquired EMT-E-TKI-R. CRISPR/Cas9-mediated analyses corroborated the importance of ZEB1 in acquired EMT-E-TKI-R, MIR200C and MIR141 to be in an EMT-E-TKI-R-associated auto-regulatory loop with ZEB1, and FGFR1 to mediate cell survival in EMT-E-TKI-R. Conclusions: The current study describes the synchronous genome-wide changes in mRNA-expression, DNA-methylation, and H3K36me3 in NSCLC EMT-E-TKI-R. The omics approaches revealed potential novel diagnostic markers and treatment targets. Besides, the study consolidates the functional impact of the MIR141/MIR200C-ZEB1/ZEB2-FGFR1-signaling axis in NSCLC EMT-E-TKI-R.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA