Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Stress ; 23(2): 125-135, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31347429

RESUMO

People who are exposed to life-threatening trauma are at risk of developing posttraumatic stress disorder (PTSD). In addition to psychological manifestations, PTSD is associated with an increased risk of myocardial infarction, arrhythmias, hypertension, and other cardiovascular problems. We previously reported that rats exposed to a predator-based model of PTSD develop myocardial hypersensitivity to ischemic injury. This study characterized cardiac changes in histology and gene expression in rats exposed this model. Male rats were subjected to two cat exposures (separated by a period of 10 d) and daily cage-mate changes for 31 d. Control rats were not exposed to the cat or cage-mate changes. Ventricular tissue was analyzed by RNA sequencing, western blotting, histology, and immunohistochemistry. Multifocal lesions characterized by necrosis, mononuclear cell infiltration, and collagen deposition were observed in hearts from all stressed rats but none of the control rats. Gene expression analysis identified clusters of upregulated genes associated with endothelial to mesenchymal transition, endothelial migration, mesenchyme differentiation, and extracellular matrix remodeling in hearts from stressed rats. Consistent with endothelial to mesenchymal transition, rats from stressed hearts exhibited increased expression of α-smooth muscle actin (a myofibroblast marker) and a decrease in the number of CD31 positive endothelial cells. These data provide evidence that predator-based stress induces myocardial lesions and reprograming of cardiac gene expression. These changes may underlie the myocardial hypersensitivity to ischemia observed in these animals. This rat model may provide a useful tool for investigating the cardiac impact of PTSD and other forms of chronic psychological stress.Lay summaryChronic predator stress induces the formation of myocardial lesions characterized by necrosis, collagen deposition, and mononuclear cell infiltration. This is accompanied by changes in gene expression and histology that are indicative of cardiac remodeling. These changes may underlie the increased risk of arrhythmias, myocardial infarction, and other cardiac pathologies in people who have PTSD or other forms of chronic stress.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Animais , Gatos , Modelos Animais de Doenças , Células Endoteliais , Fibrose , Inflamação/genética , Masculino , Ratos , Transtornos de Estresse Pós-Traumáticos/genética , Estresse Psicológico/genética , Transcriptoma
2.
J Pharmacol Exp Ther ; 360(3): 409-416, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28035008

RESUMO

Gαi-coupled receptors play important roles in protecting the heart from ischemic injury. Regulator of G protein signaling (RGS) proteins suppress Gαi signaling by accelerating the GTPase activity of Gαi subunits. However, the roles of individual RGS proteins in modulating ischemic injury are unknown. In this study, we investigated the effect of RGS6 deletion on myocardial sensitivity to ischemic injury. Hearts from RGS6 knockout (RGS6-/-) and RGS6 wild-type (RGS6+/+) mice were subjected to 30 minutes of ischemia and 2 hours of reperfusion on a Langendorff heart apparatus. Infarcts in RGS6-/- hearts were significantly larger than infarcts in RGS6+/+ hearts. RGS6-/- hearts also exhibited increased phosphorylation of ß2-adrenergic receptors and G protein-coupled receptor kinase 2 (GRK2). Mitochondrial GRK2 as well as caspase-3 cleavage were increased significantly in RGS6-/- hearts compared with RGS6+/+ hearts after ischemia. Chronic propranolol treatment of mice prevented the observed increases in ischemic injury and the GRK2 phosphorylation observed in RGS6-/- hearts. Our findings suggest that loss of RGS6 predisposes the ventricle to prodeath signaling through a ß2AR-GRK2-dependent signaling mechanism, and they provide evidence for a protective role of RGS6 in the ischemic heart. Individuals expressing genetic polymorphisms that suppress the activity of RGS6 may be at increased risk of cardiac ischemic injury. Furthermore, the development of agents that increase RGS6 expression or activity might provide a novel strategy for the treatment of ischemic heart disease.


Assuntos
Caspase 3/metabolismo , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Mitocôndrias Cardíacas/metabolismo , Infarto do Miocárdio , Isquemia Miocárdica , Proteínas RGS/metabolismo , Animais , Desenho de Fármacos , Camundongos , Camundongos Knockout , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/prevenção & controle , Isquemia Miocárdica/complicações , Isquemia Miocárdica/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Substâncias Protetoras/metabolismo , Transdução de Sinais/fisiologia
3.
Nat Cancer ; 5(6): 844-865, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38937652

RESUMO

Epigenetic dysregulation is increasingly appreciated as a hallmark of cancer, including disease initiation, maintenance and therapy resistance. As a result, there have been advances in the development and evaluation of epigenetic therapies for cancer, revealing substantial promise but also challenges. Three epigenetic inhibitor classes are approved in the USA, and many more are currently undergoing clinical investigation. In this Review, we discuss recent developments for each epigenetic drug class and their implications for therapy, as well as highlight new insights into the role of epigenetics in cancer.


Assuntos
Epigênese Genética , Epigenoma , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Epigênese Genética/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Metilação de DNA/efeitos dos fármacos , Inibidores de Histona Desacetilases/uso terapêutico , Inibidores de Histona Desacetilases/farmacologia , Terapia de Alvo Molecular/métodos , Animais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
4.
Sci Adv ; 10(22): eadm9449, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38820154

RESUMO

Pediatric cancers are frequently driven by genomic alterations that result in aberrant transcription factor activity. Here, we used functional genomic screens to identify multiple genes within the transcriptional coactivator Spt-Ada-Gcn5-acetyltransferase (SAGA) complex as selective dependencies for MYCN-amplified neuroblastoma, a disease of dysregulated development driven by an aberrant oncogenic transcriptional program. We characterized the DNA recruitment sites of the SAGA complex in neuroblastoma and the consequences of loss of SAGA complex lysine acetyltransferase (KAT) activity on histone acetylation and gene expression. We demonstrate that loss of SAGA complex KAT activity is associated with reduced MYCN binding on chromatin, suppression of MYC/MYCN gene expression programs, and impaired cell cycle progression. Further, we showed that the SAGA complex is pharmacologically targetable in vitro and in vivo with a KAT2A/KAT2B proteolysis targeting chimeric. Our findings expand our understanding of the histone-modifying complexes that maintain the oncogenic transcriptional state in this disease and suggest therapeutic potential for inhibitors of SAGA KAT activity in MYCN-amplified neuroblastoma.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteína Proto-Oncogênica N-Myc , Neuroblastoma , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Humanos , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Linhagem Celular Tumoral , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/genética , Acetilação , Histonas/metabolismo , Animais , Amplificação de Genes , Cromatina/metabolismo , Cromatina/genética , Camundongos
5.
Nat Cell Biol ; 25(2): 285-297, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36658220

RESUMO

Transcription factors (TFs) are frequently mutated in cancer. Paediatric cancers exhibit few mutations genome-wide but frequently harbour sentinel mutations that affect TFs, which provides a context to precisely study the transcriptional circuits that support mutant TF-driven oncogenesis. A broadly relevant mechanism that has garnered intense focus involves the ability of mutant TFs to hijack wild-type lineage-specific TFs in self-reinforcing transcriptional circuits. However, it is not known whether this specific type of circuitry is equally crucial in all mutant TF-driven cancers. Here we describe an alternative yet central transcriptional mechanism that promotes Ewing sarcoma, wherein constraint, rather than reinforcement, of the activity of the fusion TF EWS-FLI supports cancer growth. We discover that ETV6 is a crucial TF dependency that is specific to this disease because it, counter-intuitively, represses the transcriptional output of EWS-FLI. This work discovers a previously undescribed transcriptional mechanism that promotes cancer.


Assuntos
Sarcoma de Ewing , Criança , Humanos , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteína Proto-Oncogênica c-fli-1/genética , Proteína Proto-Oncogênica c-fli-1/metabolismo , Proteínas Proto-Oncogênicas c-ets/genética , Proteína EWS de Ligação a RNA/genética , Proteína EWS de Ligação a RNA/metabolismo , Sarcoma de Ewing/genética
6.
JCI Insight ; 7(19)2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36040810

RESUMO

Collateral lethality occurs when loss of a gene/protein renders cancer cells dependent on its remaining paralog. Combining genome-scale CRISPR/Cas9 loss-of-function screens with RNA sequencing in over 900 cancer cell lines, we found that cancers of nervous system lineage, including adult and pediatric gliomas and neuroblastomas, required the nuclear kinase vaccinia-related kinase 1 (VRK1) for their survival in vivo. VRK1 dependency was inversely correlated with expression of its paralog VRK2. VRK2 knockout sensitized cells to VRK1 loss, and conversely, VRK2 overexpression increased cell fitness in the setting of VRK1 loss. DNA methylation of the VRK2 promoter was associated with low VRK2 expression in human neuroblastomas and adult and pediatric gliomas. Mechanistically, depletion of VRK1 reduced barrier-to-autointegration factor phosphorylation during mitosis, resulting in DNA damage and apoptosis. Together, these studies identify VRK1 as a synthetic lethal target in VRK2 promoter-methylated adult and pediatric gliomas and neuroblastomas.


Assuntos
Glioma , Neuroblastoma , Vacínia , Criança , Glioma/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Sistema Nervoso , Neuroblastoma/genética , Proteínas Serina-Treonina Quinases/genética , Vaccinia virus
7.
Nat Cancer ; 3(8): 976-993, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35817829

RESUMO

Immunotherapy with anti-GD2 antibodies has advanced the treatment of children with high-risk neuroblastoma, but nearly half of patients relapse, and little is known about mechanisms of resistance to anti-GD2 therapy. Here, we show that reduced GD2 expression was significantly correlated with the mesenchymal cell state in neuroblastoma and that a forced adrenergic-to-mesenchymal transition (AMT) conferred downregulation of GD2 and resistance to anti-GD2 antibody. Mechanistically, low-GD2-expressing cell lines demonstrated significantly reduced expression of the ganglioside synthesis enzyme ST8SIA1 (GD3 synthase), resulting in a bottlenecking of GD2 synthesis. Pharmacologic inhibition of EZH2 resulted in epigenetic rewiring of mesenchymal neuroblastoma cells and re-expression of ST8SIA1, restoring surface expression of GD2 and sensitivity to anti-GD2 antibody. These data identify developmental lineage as a key determinant of sensitivity to anti-GD2 based immunotherapies and credential EZH2 inhibitors for clinical testing in combination with anti-GD2 antibody to enhance outcomes for children with neuroblastoma.


Assuntos
Gangliosídeos , Neuroblastoma , Anticorpos Monoclonais , Criança , Humanos , Imunoterapia , Recidiva Local de Neoplasia/induzido quimicamente , Neuroblastoma/tratamento farmacológico
8.
Cell Rep ; 33(5): 108341, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33147463

RESUMO

Dysregulated gene expression is a common feature of cancer and may underlie some aspects of tumor progression, including tumor relapse. Here, we show that recurrent mammary tumors exhibit global changes in gene expression and histone modifications and acquire dependence on the G9a histone methyltransferase. Genetic ablation of G9a delays tumor recurrence, and pharmacologic inhibition of G9a slows the growth of recurrent tumors. Mechanistically, G9a activity is required to silence pro-inflammatory cytokines, including tumor necrosis factor (TNF), through H3K9 methylation at gene promoters. G9a inhibition induces re-expression of these cytokines, leading to p53 activation and necroptosis. Recurrent tumors upregulate receptor interacting protein kinase-3 (RIPK3) expression and are dependent upon RIPK3 activity. High RIPK3 expression renders recurrent tumors sensitive to necroptosis following G9a inhibition. These findings demonstrate that G9a-mediated silencing of pro-necroptotic proteins is a critical step in tumor recurrence and suggest that G9a is a targetable dependency in recurrent breast cancer.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Inflamação/patologia , Neoplasias Mamárias Animais/enzimologia , Neoplasias Mamárias Animais/patologia , Recidiva Local de Neoplasia/patologia , Animais , Morte Celular , Sobrevivência Celular , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Neoplasias Mamárias Animais/genética , Camundongos Nus , Necroptose , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Fatores de Risco , Transcrição Gênica , Fator de Necrose Tumoral alfa/metabolismo , Proteína Supressora de Tumor p53/metabolismo
9.
Cell Death Differ ; 27(7): 2234-2247, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31988496

RESUMO

The molecular and genetic basis of tumor recurrence is complex and poorly understood. RIPK3 is a key effector in programmed necrotic cell death and, therefore, its expression is frequently suppressed in primary tumors. In a transcriptome profiling between primary and recurrent breast tumor cells from a murine model of breast cancer recurrence, we found that RIPK3, while absent in primary tumor cells, is dramatically reexpressed in recurrent breast tumor cells by an epigenetic mechanism. Unexpectedly, we found that RIPK3 knockdown in recurrent tumor cells reduced clonogenic growth, causing cytokinesis failure, p53 stabilization, and repressed the activities of YAP/TAZ. These data uncover a surprising role of the pro-necroptotic RIPK3 kinase in enabling productive cell cycle during tumor recurrence. Remarkably, high RIPK3 expression also rendered recurrent tumor cells exquisitely dependent on extracellular cystine and undergo necroptosis upon cystine deprivation. The induction of RIPK3 in recurrent tumors unravels an unexpected mechanism that paradoxically confers on tumors both growth advantage and necrotic vulnerability, providing potential strategies to eradicate recurrent tumors.


Assuntos
Cistina/metabolismo , Neoplasias Mamárias Animais/patologia , Recidiva Local de Neoplasia/patologia , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Regulação para Cima/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Mamárias Animais/genética , Mitose/efeitos dos fármacos , Recidiva Local de Neoplasia/genética , Piperazinas/farmacologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/genética , Ensaio Tumoral de Célula-Tronco , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima/efeitos dos fármacos , Proteínas de Sinalização YAP
10.
Nat Commun ; 11(1): 5017, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33024122

RESUMO

The survival and recurrence of residual tumor cells following therapy constitutes one of the biggest obstacles to obtaining cures in breast cancer, but it remains unclear how the clonal composition of tumors changes during relapse. We use cellular barcoding to monitor clonal dynamics during tumor recurrence in vivo. We find that clonal diversity decreases during tumor regression, residual disease, and recurrence. The recurrence of dormant residual cells follows several distinct routes. Approximately half of the recurrent tumors exhibit clonal dominance with a small number of subclones comprising the vast majority of the tumor; these clonal recurrences are frequently dependent upon Met gene amplification. A second group of recurrent tumors comprises thousands of subclones, has a clonal architecture similar to primary tumors, and is dependent upon the Jak/Stat pathway. Thus the regrowth of dormant tumors proceeds via multiple routes, producing recurrent tumors with distinct clonal composition, genetic alterations, and drug sensitivities.


Assuntos
Neoplasias da Mama/patologia , Regulação Neoplásica da Expressão Gênica , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Animais , Linhagem Celular Tumoral , Crizotinibe/farmacologia , Doxiciclina/farmacologia , Transição Epitelial-Mesenquimal/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Camundongos Nus , Recidiva Local de Neoplasia/tratamento farmacológico , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/genética , Receptor ErbB-2/genética , Análise de Célula Única , Ensaios Antitumorais Modelo de Xenoenxerto
11.
J Clin Invest ; 128(10): 4413-4428, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30148456

RESUMO

Tumor relapse is the leading cause of death in breast cancer, largely due to the fact that recurrent tumors are frequently resistant to chemotherapy. We previously reported that downregulation of the proapoptotic protein Par-4 promotes tumor recurrence in genetically engineered mouse models of breast cancer recurrence. In the present study, we examined the mechanism and functional significance of Par-4 downregulation in recurrent tumors. We found that epithelial-to-mesenchymal transition (EMT) promotes epigenetic silencing of Par-4 in recurrent tumors. Par-4 silencing proceeded through binding of the EMT transcription factor Twist to the Par-4 promoter, where Twist induced a unique bivalent chromatin domain. This bivalent configuration conferred plasticity at the Par-4 promoter, and Par-4 silencing could be reversed with pharmacologic inhibitors of Ezh2 and HDAC1/2. Using an epigenome editing approach to reexpress Par-4 by specifically reversing the histone modifications found in recurrent tumors, we found that Par-4 reexpression sensitized recurrent tumors to chemotherapy in vitro and in vivo. Upon reexpression, Par-4 bound to the protein phosphatase PP1, caused widespread changes in phosphorylation of cytoskeletal proteins, and cooperated with microtubule-targeting drugs to induce mitotic defects. These results identify Twist-induced epigenetic silencing of Par-4 as a targetable axis that promotes chemoresistance in recurrent breast cancer.


Assuntos
Proteínas Reguladoras de Apoptose/biossíntese , Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Recidiva Local de Neoplasia/metabolismo , Proteínas Supressoras de Tumor/biossíntese , Animais , Antineoplásicos/farmacologia , Proteínas Reguladoras de Apoptose/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Feminino , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , Humanos , Camundongos , Camundongos Nus , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Supressoras de Tumor/genética , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo
12.
Mol Cancer Res ; 16(4): 599-609, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29330285

RESUMO

Tumor recurrence is a leading cause of death and is thought to arise from a population of residual cells that survive treatment. These residual cancer cells can persist, locally or at distant sites, for years or decades. Therefore, understanding the pathways that regulate residual cancer cell survival may suggest opportunities for targeting these cells to prevent recurrence. Previously, it was observed that the proapoptotic protein (PAWR/Par-4) negatively regulates residual cell survival and recurrence in mice and humans. However, the mechanistic underpinnings on how Par-4 expression is regulated are unclear. Here, it is demonstrated that Par-4 is transcriptionally upregulated following treatment with multiple drugs targeting the PI3K-Akt-mTOR signaling pathway, and identify the Forkhead family of transcription factors as mediators of this upregulation. Mechanistically, Foxo3a directly binds to the Par-4 promoter and activates its transcription following inhibition of the PI3K-Akt pathway. This Foxo-dependent Par-4 upregulation limits the long-term survival of residual cells following treatment with therapeutics that target the PI3K-Akt pathway. Taken together, these results indicate that residual breast cancer tumor cell survival and recurrence requires circumventing Foxo-driven Par-4 upregulation and suggest that approaches to enforce Par-4 expression may prevent residual cell survival and recurrence. Mol Cancer Res; 16(4); 599-609. ©2018 AACR.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Neoplasias da Mama/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Lapatinib/farmacologia , Recidiva Local de Neoplasia/metabolismo , Regulação para Cima , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Fosfatidilinositol 3-Quinases/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
13.
Cardiovasc Res ; 91(1): 45-52, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21349876

RESUMO

AIMS: Regulator of G protein signalling (RGS) proteins act as molecular 'off switches' that terminate G protein signalling by catalyzing the hydrolysis of Gα-bound GTP to GDP. Many different Gα(i)-coupled receptors have been implicated in the cardioprotective effects of ischaemic preconditioning. However, the role of RGS proteins in modulating cardioprotection has not been previously investigated. We used mice that were homozygous (GS/GS) or heterozygous (GS/+) for a mutation in Gα(i2) rendering it RGS-insensitive (G184S) to determine whether interactions between endogenous RGS proteins and Gα(i2) modulate Gα(i)-mediated protection from ischaemic injury. METHODS AND RESULTS: Langendorff-perfused mouse hearts were subjected to 30 min global ischaemia and 2 h reperfusion. Infarcts in GS/GS (14.5% of area at risk) and GS/+ (22.6% of AAR) hearts were significantly smaller than those of +/+ hearts (37.2% of AAR) and recovery of contractile function was significantly enhanced in GS/GS and GS/+ hearts compared with +/+ hearts. The cardioprotective phenotype was not reversed by wortmannin or U0126 but was reversed by 5-hydroxydecanoic acid and HMR 1098, indicating that RGS-insensitive Gα(i2) protects the heart through a mechanism that requires functional ATP-dependent potassium channels but does not require acute activation of extracellular-regulated kinase or Akt signalling pathways. CONCLUSIONS: This is the first study to demonstrate that Gα(i2)-mediated cardioprotection is suppressed by RGS proteins. These data suggest that RGS proteins may provide novel therapeutic targets to protect the heart from ischaemic injury.


Assuntos
Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/metabolismo , Proteínas RGS/metabolismo , Análise de Variância , Animais , Cardiotônicos/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/genética , Genótipo , Canais KATP/antagonistas & inibidores , Canais KATP/metabolismo , Análise dos Mínimos Quadrados , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mutação , Contração Miocárdica/efeitos dos fármacos , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/patologia , Perfusão , Fenótipo , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA