RESUMO
Butyrate is a short-chain fatty acid (SCFA) derived from microbiota and is involved in a range of cell processes in a concentration-dependent manner. Low concentrations of sodium butyrate (NaBu) were shown to be proangiogenic. However, the mechanisms associated with these effects are not yet fully known. Here, we investigated the contribution of the SCFA receptor GPR43 in the proangiogenic effects of local treatment with NaBu and its effects on matrix remodeling using the sponge-induced fibrovascular tissue model in mice lacking the Gpr43 gene (Gpr43-KO) and the wild-type (WT) mice. We demonstrated that NaBu (0.2 mM intraimplant) treatment enhanced the neovascularization process, blood flow, and VEGF levels in a GPR43-dependent manner in the implants. Moreover, NaBu was able to modulate matrix remodeling aspects of the granulation tissue such as proteoglycan production, collagen deposition, and α-smooth muscle actin (α-SMA) expression in vivo, besides increasing transforming growth factor (TGF)-ß1 levels in the fibrovascular tissue, in a GPR43-dependent manner. Interestingly, NaBu directly stimulated L929 murine fibroblast migration and TGF-ß1 and collagen production in vitro. GPR43 was found to be expressed in human dermal fibroblasts, myofibroblasts, and endothelial cells. Overall, our findings evidence that the metabolite-sensing receptor GPR43 contributes to the effects of low dose of NaBu in inducing angiogenesis and matrix remodeling during granulation tissue formation. These data provide important insights for the proposition of new therapeutic approaches based on NaBu, beyond the highly explored intestinal, anti-inflammatory, and anticancer purposes, as a local treatment to improve tissue repair, particularly, by modulating granulation tissue components.NEW & NOTEWORTHY Our data show the contribution of the metabolite-sensing receptor GPR43 in the effects of low dose of sodium butyrate (NaBu) on stimulating angiogenesis and extracellular matrix remodeling in a model of granulation tissue formation in mice. We also show that human dermal fibroblasts, myofibroblasts, and endothelial cells express the receptor GPR43. These data provide important insights for the use of NaBu in local therapeutic approaches applicable to tissue repair in sites other than the intestine.
Assuntos
Indutores da Angiogênese/administração & dosagem , Ácido Butírico/administração & dosagem , Matriz Extracelular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Tecido de Granulação/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colágeno/metabolismo , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Tecido de Granulação/metabolismo , Tecido de Granulação/patologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Tampões de Gaze Cirúrgicos , Fator de Crescimento Transformador beta1/metabolismoRESUMO
Antibiotic-induced dysbiosis is a key predisposing factor for Clostridium difficile infections (CDIs), which cause intestinal disease ranging from mild diarrhea to pseudomembranous colitis. Here, we examined the impact of a microbiota-derived metabolite, short-chain fatty acid acetate, on an acute mouse model of CDI. We found that administration of acetate is remarkably beneficial in ameliorating disease. Mechanistically, we show that acetate enhances innate immune responses by acting on both neutrophils and ILC3s through its cognate receptor free fatty acid receptor 2 (FFAR2). In neutrophils, acetate-FFAR2 signaling accelerates their recruitment to the inflammatory sites, facilitates inflammasome activation, and promotes the release of IL-1ß; in ILC3s, acetate-FFAR2 augments expression of the IL-1 receptor, which boosts IL-22 secretion in response to IL-1ß. We conclude that microbiota-derived acetate promotes host innate responses to C. difficile through coordinate action on neutrophils and ILC3s.