Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Br J Cancer ; 123(7): 1101-1113, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32684628

RESUMO

BACKGROUND: Epithelioid inflammatory myofibroblastic sarcoma (eIMS) is characterised by perinuclear ALK localisation, CD30 expression and early relapse despite crizotinib treatment. We aimed to identify therapies to prevent and/or treat ALK inhibitor resistance. METHODS: Malignant ascites, from an eIMS patient at diagnosis and following multiple relapses, were used to generate matched diagnosis and relapse xenografts. RESULTS: Xenografts were validated by confirmation of RANBP2-ALK rearrangement, perinuclear ALK localisation and CD30 expression. Although brentuximab-vedotin (BV) demonstrated single-agent activity, tumours regrew during BV therapy. BV resistance was associated with reduced CD30 expression and induction of ABCB1. BV resistance was reversed in vitro by tariquidar, but combination BV and tariquidar treatment only briefly slowed xenograft growth compared with BV alone. Combining BV with either crizotinib or ceritinib resulted in marked tumour shrinkage in both xenograft models, and resulted in prolonged tumour-free survival in the diagnosis compared with the relapse xenograft. CONCLUSIONS: CD30 is a therapeutic target in eIMS. BV efficacy is limited by the rapid emergence of resistance. Prolonged survival with combination ALK and CD30-targeted-therapy in the diagnosis model provides the rationale to trial this combination in eIMS patients at diagnosis. This combination could also be considered for other CD30-positive, ALK-rearranged malignancies.


Assuntos
Quinase do Linfoma Anaplásico/antagonistas & inibidores , Quinase do Linfoma Anaplásico/genética , Rearranjo Gênico , Antígeno Ki-1/antagonistas & inibidores , Chaperonas Moleculares/genética , Miofibroblastos/patologia , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Sarcoma/tratamento farmacológico , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Idoso de 80 Anos ou mais , Animais , Brentuximab Vedotin/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Humanos , Inflamação , Masculino , Camundongos , Sarcoma/genética , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Haematologica ; 105(6): 1517-1526, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31413099

RESUMO

Telomerase is a ribonucleoprotein complex that maintains the length and integrity of telomeres, and thereby enables cellular proliferation. Understanding the regulation of telomerase in hematopoietic cells is relevant to the pathogenesis of leukemia, in which telomerase is constitutively activated, as well as bone marrow failure syndromes that feature telomerase insufficiency. Past studies showing high levels of telomerase in human erythroblasts and a prevalence of anemia in disorders of telomerase insufficiency provide the rationale for investigating telomerase regulation in erythroid cells. Here it is shown for the first time that the telomerase RNA-binding protein dyskerin (encoded by DKC1) is dramatically upregulated as human hematopoietic stem and progenitor cells commit to the erythroid lineage, driving an increase in telomerase activity in the presence of limiting amounts of TERT mRNA. It is also shown that upregulation of DKC1 was necessary for expansion of glycophorin A+ erythroblasts and sufficient to extend telomeres in erythroleukemia cells. Chromatin immunoprecipitation and reporter assays implicated GATA1-mediated transcriptional regulation of DKC1 in the modulation of telomerase in erythroid lineage cells. Together these results describe a novel mechanism of telomerase regulation in erythroid cells which contrasts with mechanisms centered on transcriptional regulation of TERT that are known to operate in other cell types. This is the first study to reveal a biological context in which telomerase is upregulated by DKC1 and to implicate GATA1 in telomerase regulation. The results from this study are relevant to hematopoietic disorders involving DKC1 mutations, GATA1 deregulation and/or telomerase insufficiency.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Eritroblastos/metabolismo , Fator de Transcrição GATA1/metabolismo , Proteínas Nucleares/metabolismo , Telomerase , Proteínas de Ciclo Celular/genética , Fator de Transcrição GATA1/genética , Humanos , Proteínas Nucleares/genética , Telomerase/genética , Telomerase/metabolismo , Regulação para Cima
3.
Nucleic Acids Res ; 44(22): 10644-10661, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27604872

RESUMO

Aberrant stem cell-like gene regulatory networks are a feature of leukaemogenesis. The ETS-related gene (ERG), an important regulator of normal haematopoiesis, is also highly expressed in T-ALL and acute myeloid leukaemia (AML). However, the transcriptional regulation of ERG in leukaemic cells remains poorly understood. In order to discover transcriptional regulators of ERG, we employed a quantitative mass spectrometry-based method to identify factors binding the 321 bp ERG +85 stem cell enhancer region in MOLT-4 T-ALL and KG-1 AML cells. Using this approach, we identified a number of known binders of the +85 enhancer in leukaemic cells along with previously unknown binders, including ETV6 and IKZF1. We confirmed that ETV6 and IKZF1 were also bound at the +85 enhancer in both leukaemic cells and in healthy human CD34+ haematopoietic stem and progenitor cells. Knockdown experiments confirmed that ETV6 and IKZF1 are transcriptional regulators not just of ERG, but also of a number of genes regulated by a densely interconnected network of seven transcription factors. At last, we show that ETV6 and IKZF1 expression levels are positively correlated with expression of a number of heptad genes in AML and high expression of all nine genes confers poorer overall prognosis.


Assuntos
Fator de Transcrição Ikaros/fisiologia , Proteínas Proto-Oncogênicas c-ets/fisiologia , Proteínas Repressoras/fisiologia , Transcrição Gênica , Sequência de Bases , Sítios de Ligação , Linhagem Celular Tumoral , Sequência Consenso , Elementos Facilitadores Genéticos , Regulação Leucêmica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Estimativa de Kaplan-Meier , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/mortalidade , Prognóstico , Modelos de Riscos Proporcionais , Ligação Proteica , Proteoma , Proteômica , Regulador Transcricional ERG/fisiologia , Variante 6 da Proteína do Fator de Translocação ETS
4.
BMC Genomics ; 18(1): 399, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28535780

RESUMO

BACKGROUND: RNA-Seq is now widely used as a research tool. Choices must be made whether to use paired-end (PE) or single-end (SE) sequencing, and whether to use strand-specific or non-specific (NS) library preparation kits. To date there has been no analysis of the effect of these choices on identifying differentially expressed genes (DEGs) between controls and treated samples and on downstream functional analysis. RESULTS: We undertook four mammalian transcriptomics experiments to compare the effect of SE and PE protocols on read mapping, feature counting, identification of DEGs and functional analysis. For three of these experiments we also compared a non-stranded (NS) and a strand-specific approach to mapping the paired-end data. SE mapping resulted in a reduced number of reads mapped to features, in all four experiments, and lower read count per gene. Up to 4.3% of genes in the SE data and up to 12.3% of genes in the NS data had read counts which were significantly different compared to the PE data. Comparison of DEGs showed the presence of false positives (average 5%, using voom) and false negatives (average 5%, using voom) using the SE reads. These increased further, by one or two percentage points, with the NS data. Gene ontology functional enrichment (GO) of the DEGs arising from SE or NS approaches, revealed striking differences in the top 20 GO terms, with as little as 40% concordance with PE results. Caution is therefore advised in the interpretation of such results. By comparison, there was overall consistency in gene set enrichment analysis results. CONCLUSIONS: A strand-specific protocol should be used in library preparation to generate the most reliable and accurate profile of expression. Ideally PE reads are also recommended particularly for transcriptome assembly. Whilst SE reads produce a DEG list with around 5% of false positives and false negatives, this method can substantially reduce sequencing cost and this saving could be used to increase the number of biological replicates thereby increasing the power of the experiment. As SE reads, when used in association with gene set enrichment, can generate accurate biological results, this may be a desirable trade-off.


Assuntos
Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA , Animais , Ontologia Genética , Humanos , Camundongos
5.
Semin Cancer Biol ; 35 Suppl: S104-S128, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25869441

RESUMO

One of the hallmarks of malignant cell populations is the ability to undergo continuous proliferation. This property allows clonal lineages to acquire sequential aberrations that can fuel increasingly autonomous growth, invasiveness, and therapeutic resistance. Innate cellular mechanisms have evolved to regulate replicative potential as a hedge against malignant progression. When activated in the absence of normal terminal differentiation cues, these mechanisms can result in a state of persistent cytostasis. This state, termed "senescence," can be triggered by intrinsic cellular processes such as telomere dysfunction and oncogene expression, and by exogenous factors such as DNA damaging agents or oxidative environments. Despite differences in upstream signaling, senescence often involves convergent interdependent activation of tumor suppressors p53 and p16/pRB, but can be induced, albeit with reduced sensitivity, when these suppressors are compromised. Doses of conventional genotoxic drugs required to achieve cancer cell senescence are often much lower than doses required to achieve outright cell death. Additional therapies, such as those targeting cyclin dependent kinases or components of the PI3K signaling pathway, may induce senescence specifically in cancer cells by circumventing defects in tumor suppressor pathways or exploiting cancer cells' heightened requirements for telomerase. Such treatments sufficient to induce cancer cell senescence could provide increased patient survival with fewer and less severe side effects than conventional cytotoxic regimens. This positive aspect is countered by important caveats regarding senescence reversibility, genomic instability, and paracrine effects that may increase heterogeneity and adaptive resistance of surviving cancer cells. Nevertheless, agents that effectively disrupt replicative immortality will likely be valuable components of new combinatorial approaches to cancer therapy.


Assuntos
Proliferação de Células/genética , Senescência Celular/genética , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/genética , Antineoplásicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Instabilidade Genômica/efeitos dos fármacos , Humanos , Neoplasias/patologia , Fosfatidilinositol 3-Quinases/genética , Transdução de Sinais/genética , Telomerase/efeitos dos fármacos , Telomerase/genética , Proteína Supressora de Tumor p53/genética
6.
Cell Mol Biol Lett ; 20(4): 626-46, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26274783

RESUMO

Extensive re-organisation of the actin cytoskeleton and changes in the expression of its binding proteins is a characteristic feature of cancer cells. Previously we have shown that the tropomyosin isoform Tpm3.1, an integral component of the actin cytoskeleton in tumor cells, is required for tumor cell survival. Our objective was to determine whether cancer cells devoid of Tpm3.1 would evade the tumorgenic effects induced by H-Ras transformation. The tropomyosin isoform (Tpm) expression profile of a range of cancer cell lines (21) demonstrates that Tpm3.1 is one of the most broadly expressed Tpm isoform. Consequently, the contribution of Tpm3.1 to the transformation process was functionally evaluated. Primary embryonic fibroblasts isolated from wild type (WT) and Tpm3.1 knockout (KO) mice were transduced with retroviral vectors expressing SV40 large T antigen and an oncogenic allele of the H-Ras gene, H-RasV12, to generate immortalized and transformed WT and KO MEFs respectively. We show that Tpm3.1 is required for growth factor-independent proliferation in the SV40 large T antigen immortalized MEFs, but this requirement is overcome by H-Ras transformation. Consistent with those findings, we found that Tpm3.1 was not required for anchorage independent growth or growth of H-Ras-driven tumors in a mouse model. Finally, we show that pERK and Importin 7 protein interactions are significantly decreased in the SV40 large T antigen immortalized KO MEFs but not in the H-Ras transformed KO cells, relative to control MEFs. The data demonstrate that H-Ras transformation overrides a requirement for Tpm3.1 in growth factor-independent proliferation of immortalized MEFs. We propose that in the SV40 large T antigen immortalized MEFs, Tpm3.1 is partly responsible for the efficient interaction between pERK and Imp7 resulting in cell proliferation, but this is overidden by Ras transformation.


Assuntos
Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Genes ras/genética , Tropomiosina/genética , Animais , Antígenos Transformantes de Poliomavirus/genética , Linhagem Celular Tumoral , Proliferação de Células , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Fibroblastos/patologia , Humanos , Carioferinas/genética , Carioferinas/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Tropomiosina/metabolismo
7.
J Biol Chem ; 288(17): 12032-41, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23449974

RESUMO

Survivin is an essential component of the chromosomal passenger complex and a member of the inhibitor of apoptosis family. It is expressed at high levels in a large variety of malignancies, where it has been implicated in drug resistance. It was also shown previously that survivin is up-regulated during telomerase-mediated immortalization, which occurs at a relatively early stage during carcinogenesis. This study shows that up-regulation of survivin during immortalization of human myofibroblasts is an indirect consequence of the repression of p16(INK4a). Survivin and p16(INK4a) were functionally linked by assays that showed that either the up-regulation of survivin or repression of p16(INK4a) rendered telomerase-transduced MRC-5 myofibroblasts resistant to oxidative stress. Conversely, siRNA-mediated down-regulation of survivin activated caspases and enhanced the sensitivity of immortal MRC-5 cells to oxidative stress. The E2F1 transcription factor, which is negatively regulated by the pRB/p16(INK4a) tumor suppressor pathway, was implicated in the up-regulation of survivin. Using the ChIP assay, it was shown that E2F1 directly interacted with the survivin gene (BIRC5) promoter in cells that spontaneously silenced p16(INK4a) during telomerase-mediated immortalization. E2F1 binding to the BIRC5 was also enhanced in telomerase-transduced cells subjected to shRNA-mediated repression of p16(INK4a). Together, these data show that repression of p16(INK4a) contributes to the up-regulation of survivin and thereby provides a survival advantage to cells exposed to oxidative stress during immortalization. The up-regulation of survivin during immortalization likely contributes to the vulnerability of immortal cells to transformation by oncogenes that alter intracellular redox state.


Assuntos
Transformação Celular Neoplásica/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/biossíntese , Proteínas Inibidoras de Apoptose/biossíntese , Miofibroblastos/metabolismo , Estresse Oxidativo , Elementos de Resposta , Regulação para Cima , Linhagem Celular Transformada , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Inibidor p16 de Quinase Dependente de Ciclina/genética , Humanos , Proteínas Inibidoras de Apoptose/genética , Miofibroblastos/patologia , Oxirredução , Survivina , Telomerase/genética , Telomerase/metabolismo
8.
PLoS Genet ; 7(6): e1002135, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21698133

RESUMO

The N-Myc oncoprotein is a critical factor in neuroblastoma tumorigenesis which requires additional mechanisms converting a low-level to a high-level N-Myc expression. N-Myc protein is stabilized when phosphorylated at Serine 62 by phosphorylated ERK protein. Here we describe a novel positive feedback loop whereby N-Myc directly induced the transcription of the class III histone deacetylase SIRT1, which in turn increased N-Myc protein stability. SIRT1 binds to Myc Box I domain of N-Myc protein to form a novel transcriptional repressor complex at gene promoter of mitogen-activated protein kinase phosphatase 3 (MKP3), leading to transcriptional repression of MKP3, ERK protein phosphorylation, N-Myc protein phosphorylation at Serine 62, and N-Myc protein stabilization. Importantly, SIRT1 was up-regulated, MKP3 down-regulated, in pre-cancerous cells, and preventative treatment with the SIRT1 inhibitor Cambinol reduced tumorigenesis in TH-MYCN transgenic mice. Our data demonstrate the important roles of SIRT1 in N-Myc oncogenesis and SIRT1 inhibitors in the prevention and therapy of N-Myc-induced neuroblastoma.


Assuntos
Fosfatase 6 de Especificidade Dupla/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Sirtuína 1/metabolismo , Animais , Sítios de Ligação/genética , Linhagem Celular Tumoral , Proliferação de Células , Fosfatase 6 de Especificidade Dupla/genética , Inibidores Enzimáticos/farmacologia , Retroalimentação Fisiológica , Regulação Neoplásica da Expressão Gênica , Camundongos , Camundongos Transgênicos , Naftalenos/farmacologia , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Fosforilação , Regiões Promotoras Genéticas , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-myc/genética , Pirimidinonas/farmacologia , Distribuição Aleatória , Sirtuína 1/genética , Fator de Transcrição Sp1/metabolismo , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética
9.
Cancer Med ; 13(6): e7052, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38523552

RESUMO

BACKGROUND: Carcinoma of unknown primary (CUP) remains an important tumor entity and a disproportionate cause of cancer mortality. Little is known about the contemporary clinical characteristics, treatment patterns, and outcomes of CUP patients based on updated international classification guidelines. We evaluated a contemporary CUP cohort to provide insight into current clinical practice and the impact of tissue of origin assignment, site-specific and empirical therapy in a real-world setting. METHODS: We conducted a retrospective cohort study of CUP patients, as defined by the updated European Society of Medical Oncology (ESMO) 2023 guidelines, across three tertiary referral centers in Australia between 2015 and 2022. We analyzed clinical characteristics, treatment patterns, and survival outcomes using the Kaplan-Meier method and Cox regression proportional hazard model between favorable and unfavorable risk groups. RESULTS: We identified a total of 123 CUP patients (n = 86 unfavorable, n = 37 favorable risk as per the 2023 ESMO guidelines). Sixty-four patients (52%) were assigned a tissue of origin by the treating clinician. Median progression free survival (PFS) was 6.8 (95% confidence interval (CI) 5.1-12.1) months and overall survival (OS) 10.2 (95% CI 6.0-18.5) months. Unfavorable risk (hazard ratio [HR] 2.9, p = 0.006), poor performance status (HR 2.8, p < 0.001), and non-squamous histology (HR 2.5, p < 0.05) were associated with poor survival outcome. A total of 70 patients (57%) proceeded to systemic therapy. In patients with non-squamous histology and unfavorable risk, site-specific therapy compared to empirical chemotherapy did not improve outcome (median OS 8.2 vs. 11.8 months, p = 0.7). CONCLUSIONS: In this real-world cohort, CUP presentations were heterogenous. Overall survival and rates of systemic treatment were poor. Poor performance status and unfavorable risk were associated with worse survival. For most patients, site-specific therapy did not improve survival outcome. Improved and timely access to diagnostic tests and therapeutics for this group of patients is urgently required.


Assuntos
Carcinoma , Neoplasias Primárias Desconhecidas , Humanos , Estudos Retrospectivos , Neoplasias Primárias Desconhecidas/terapia , Neoplasias Primárias Desconhecidas/patologia , Modelos de Riscos Proporcionais , Intervalo Livre de Progressão
10.
Angiogenesis ; 16(2): 373-86, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23143659

RESUMO

The anti-angiogenic activity of chemotherapy is both dose- and schedule-dependent. While conventional maximum tolerated dose (MTD) chemotherapy exerts only mild and reversible anti-angiogenic effects, low-dose metronomic (LDM) chemotherapy was developed to specifically target tumour angiogenesis. However, the long-term effects of either MTD or LDM chemotherapy on vascular endothelial cells have never been investigated. Here, we demonstrated that repeated exposure to MTD and LDM chemotherapy differentially impact on the angiogenic potential and chemosensitivity of immortalized endothelial cells. Repeated MTD vinblastine treatment of vascular endothelial cells led to an increased proliferation rate and resistance to paclitaxel. In contrast, repeated LDM treatment with vinblastine or etoposide impaired the angiogenic potential of endothelial cells and increased their chemosensitivity. This effect was associated with a significant decrease in ßII- and ßIII-tubulin expression. Functional analysis using siRNA showed that silencing the expression of ßIII-tubulin in endothelial cells significantly decreased their capacity to form vascular structures and increased their sensitivity to the anti-angiogenic and vascular-disrupting effects of chemotherapy, whereas silencing ßII-tubulin expression had no effect. Collectively our results show that LDM chemotherapy impairs the angiogenic potential of endothelial cells while increasing their chemosensitivity-an effect at least in part mediated by the down-regulation of ßIII-tubulin expression. Furthermore, our study suggests that ßIII-tubulin represents an attractive therapeutic target to increase the anti-angiogenic effects of chemotherapy and overall anti-tumour efficacy.


Assuntos
Antineoplásicos/farmacologia , Endotélio Vascular/efeitos dos fármacos , Neovascularização Patológica/prevenção & controle , Antineoplásicos/administração & dosagem , Sequência de Bases , Western Blotting , Linhagem Celular Transformada , Primers do DNA , Relação Dose-Resposta a Droga , Esquema de Medicação , Endotélio Vascular/citologia , Inativação Gênica , Humanos , Reação em Cadeia da Polimerase , RNA Interferente Pequeno , Tubulina (Proteína)/metabolismo
11.
Blood ; 117(26): 7079-89, 2011 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-21536859

RESUMO

The Ets-related gene (ERG) is an Ets-transcription factor required for normal blood stem cell development. ERG expression is down-regulated during early T-lymphopoiesis but maintained in T-acute lymphoblastic leukemia (T-ALL), where it is recognized as an independent risk factor for adverse outcome. However, it is unclear whether ERG is directly involved in the pathogenesis of T-ALL and how its expression is regulated. Here we demonstrate that transgenic expression of ERG causes T-ALL in mice and that its knockdown reduces the proliferation of human MOLT4 T-ALL cells. We further demonstrate that ERG expression in primary human T-ALL cells is mediated by the binding of other T-cell oncogenes SCL/TAL1, LMO2, and LYL1 in concert with ERG, FLI1, and GATA3 to the ERG +85 enhancer. This enhancer is not active in normal T cells but in transgenic mice targets expression to fetal liver c-kit(+) cells, adult bone marrow stem/progenitors and early CD4(-)CD8(-) double-negative thymic progenitors. Taken together, these data illustrate that ERG promotes T-ALL and that failure to extinguish activity of stem cell enhancers associated with regulatory transcription factors such as ERG can contribute to the development of leukemia.


Assuntos
Regulação Leucêmica da Expressão Gênica , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Linfócitos T/metabolismo , Transativadores/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Proteínas com Domínio LIM , Metaloproteínas/metabolismo , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Proteínas de Neoplasias/metabolismo , Transplante de Neoplasias , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-vav/genética , Proteínas Proto-Oncogênicas c-vav/metabolismo , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Análise de Sobrevida , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Linfócitos T/patologia , Transativadores/antagonistas & inibidores , Transativadores/química , Transativadores/genética , Regulador Transcricional ERG
12.
J Biol Chem ; 286(43): 37639-50, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-21903579

RESUMO

The p53 protein is a primary mediator of cellular apoptosis and growth arrest after exposure to DNA-damaging agents. Previous work has shown that the majority of childhood acute lymphoblastic leukemia (ALL) cases express a wild type p53 gene, although the functionality of the p53 pathway has rarely been validated. In the present study, the integrity of the p53 pathway was investigated in a panel of ALL cell lines and xenografts established from direct patient explants in immune-deficient mice. A focused real-time quantitative reverse transcription PCR array of known p53-regulated genes identified p21(WAF1) (CDKN1A) as the highest ranked gene to be differentially expressed between B-cell precursor (BCP)-ALL and T-ALL xenografts following exposure to the DNA-damaging drug etoposide. Lack of p21(WAF1) induction was observed in six of seven T-ALL xenograft lines, as well as primary T-ALL cells following irradiation exposure, despite an otherwise functional p53 response. Repression of p21(WAF1) in T-ALL cells was associated with decreased acetylated H3K9 localized at its promoter compared with BCP-ALL cells, together with increased CpG methylation within the first exon and intron. Although the histone deacetylase inhibitor vorinostat failed to induce p21(WAF1) in T-ALL samples, the combination of vorinostat and the demethylating agent decitabine reactivated expression of the silenced p21(WAF1) gene in the Molt-4 T-ALL cell line. Considering the known anti-apoptotic function of p21(WAF1), our findings have significant implications for the responses of T- versus BCP-ALL cells to chemotherapeutic drugs that induce p21(WAF1).


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Epigênese Genética , Regulação Leucêmica da Expressão Gênica , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Acetilação/efeitos dos fármacos , Adolescente , Animais , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Criança , Pré-Escolar , Ilhas de CpG/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Etoposídeo/farmacologia , Feminino , Perfilação da Expressão Gênica , Inibidores de Histona Desacetilases/farmacologia , Histonas/genética , Histonas/metabolismo , Humanos , Ácidos Hidroxâmicos/farmacologia , Células Jurkat , Masculino , Camundongos , Camundongos SCID , Transplante de Neoplasias , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transplante Heterólogo , Proteína Supressora de Tumor p53/genética , Vorinostat
13.
Cancer Cell ; 40(8): 835-849.e8, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35839778

RESUMO

The proteome provides unique insights into disease biology beyond the genome and transcriptome. A lack of large proteomic datasets has restricted the identification of new cancer biomarkers. Here, proteomes of 949 cancer cell lines across 28 tissue types are analyzed by mass spectrometry. Deploying a workflow to quantify 8,498 proteins, these data capture evidence of cell-type and post-transcriptional modifications. Integrating multi-omics, drug response, and CRISPR-Cas9 gene essentiality screens with a deep learning-based pipeline reveals thousands of protein biomarkers of cancer vulnerabilities that are not significant at the transcript level. The power of the proteome to predict drug response is very similar to that of the transcriptome. Further, random downsampling to only 1,500 proteins has limited impact on predictive power, consistent with protein networks being highly connected and co-regulated. This pan-cancer proteomic map (ProCan-DepMapSanger) is a comprehensive resource available at https://cellmodelpassports.sanger.ac.uk.


Assuntos
Neoplasias , Proteômica , Biomarcadores Tumorais/genética , Linhagem Celular , Humanos , Neoplasias/genética , Proteoma/metabolismo , Proteômica/métodos
14.
EMBO Mol Med ; 14(4): e14608, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-34927798

RESUMO

Biomarkers which better match anticancer drugs with cancer driver genes hold the promise of improved clinical responses and cure rates. We developed a precision medicine platform of rapid high-throughput drug screening (HTS) and patient-derived xenografting (PDX) of primary tumor tissue, and evaluated its potential for treatment identification among 56 consecutively enrolled high-risk pediatric cancer patients, compared with conventional molecular genomics and transcriptomics. Drug hits were seen in the majority of HTS and PDX screens, which identified therapeutic options for 10 patients for whom no targetable molecular lesions could be found. Screens also provided orthogonal proof of drug efficacy suggested by molecular analyses and negative results for some molecular findings. We identified treatment options across the whole testing platform for 70% of patients. Only molecular therapeutic recommendations were provided to treating oncologists and led to a change in therapy in 53% of patients, of whom 29% had clinical benefit. These data indicate that in vitro and in vivo drug screening of tumor cells could increase therapeutic options and improve clinical outcomes for high-risk pediatric cancer patients.


Assuntos
Antineoplásicos , Neoplasias , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Criança , Modelos Animais de Doenças , Genômica/métodos , Humanos , Neoplasias/patologia , Medicina de Precisão/métodos , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Biochim Biophys Acta ; 1803(10): 1142-53, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20619302

RESUMO

Reactivation of telomerase in endothelial cells (ECs) may be an effective approach to the treatment of vascular disorders associated with telomere attrition and EC senescence. However, overexpression of human telomerase reverse transcriptase (hTERT) does not prevent net telomere loss in ECs grown in standard culture medium with exposure to atmospheric oxygen (21% O(2)). Since these culture conditions are hyperoxic relative to normal tissue in vivo, where oxygen tension is estimated to be 1%-6%, we examined the effects of reduced exposure to oxidative stress (OS) on telomere length maintenance in hTERT-transduced bone marrow endothelial (BMhTERT) cells. Propagation of BMhTERT cells in the free radical scavenger, tert-butylhydroxylamine (tBN), and/or in 5% O(2) increased telomerase enzyme activity and facilitated telomere length maintenance. The enhancement of telomerase activity correlated with higher levels of the telomerase RNA component (hTR). We also investigated the role of the telomere binding protein, TRF1, in telomere length regulation under alternate OS conditions. Inhibition of TRF1 function had no effect on telomere length in BMhTERT cells grown under standard culture conditions. However, alleviation of OS by growth in tBN plus 5% O(2), elevated hTR levels, enhanced telomerase enzyme activity, and enabled progressive telomere lengthening. The direct impact of hTR levels on telomerase-mediated telomere lengthening was demonstrated by overexpression of hTR. BMhTERT cells transduced with hTR exhibited very high telomerase enzyme activity and underwent dramatic telomere lengthening under standard culture conditions. Overall, these results demonstrate that hTR levels are reduced by mild hyperoxia and limit telomerase-mediated telomere lengthening in hTERT-transduced ECs.


Assuntos
Células Endoteliais/metabolismo , RNA/metabolismo , Telomerase/metabolismo , Telômero/metabolismo , Western Blotting , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Hipóxia Celular , Proliferação de Células , Células Cultivadas , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Vetores Genéticos/genética , Humanos , Hidroxilaminas/farmacologia , Estresse Oxidativo , RNA/genética , Retroviridae/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Telomerase/genética , Telômero/genética , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Transdução Genética , Proteína Supressora de Tumor p53/metabolismo
16.
Clin Cancer Res ; 27(5): 1438-1451, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33310889

RESUMO

PURPOSE: TERT gene rearrangement with transcriptional superenhancers leads to TERT overexpression and neuroblastoma. No targeted therapy is available for clinical trials in patients with TERT-rearranged neuroblastoma. EXPERIMENTAL DESIGN: Anticancer agents exerting the best synergistic anticancer effects with BET bromodomain inhibitors were identified by screening an FDA-approved oncology drug library. The synergistic effects of the BET bromodomain inhibitor OTX015 and the proteasome inhibitor carfilzomib were examined by immunoblot and flow cytometry analysis. The anticancer efficacy of OTX015 and carfilzomib combination therapy was investigated in mice xenografted with TERT-rearranged neuroblastoma cell lines or patient-derived xenograft (PDX) tumor cells, and the role of TERT reduction in the anticancer efficacy was examined through rescue experiments in mice. RESULTS: The BET bromodomain protein BRD4 promoted TERT-rearranged neuroblastoma cell proliferation through upregulating TERT expression. Screening of an approved oncology drug library identified the proteasome inhibitor carfilzomib as the agent exerting the best synergistic anticancer effects with BET bromodomain inhibitors including OTX015. OTX015 and carfilzomib synergistically reduced TERT protein expression, induced endoplasmic reticulum stress, and induced TERT-rearranged neuroblastoma cell apoptosis which was blocked by TERT overexpression and endoplasmic reticulum stress antagonists. In mice xenografted with TERT-rearranged neuroblastoma cell lines or PDX tumor cells, OTX015 and carfilzomib synergistically blocked TERT expression, induced tumor cell apoptosis, suppressed tumor progression, and improved mouse survival, which was largely reversed by forced TERT overexpression. CONCLUSIONS: OTX015 and carfilzomib combination therapy is likely to be translated into the first clinical trial of a targeted therapy in patients with TERT-rearranged neuroblastoma.


Assuntos
Acetanilidas/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Rearranjo Gênico , Compostos Heterocíclicos com 3 Anéis/farmacologia , Terapia de Alvo Molecular/métodos , Neuroblastoma/tratamento farmacológico , Oligopeptídeos/farmacologia , Telomerase/genética , Fatores de Transcrição/antagonistas & inibidores , Animais , Apoptose , Proliferação de Células , Quimioterapia Combinada , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Inibidores de Proteassoma/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Future Oncol ; 6(5): 769-89, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20465390

RESUMO

Over the past two decades, it has become increasingly apparent that telomerase-mediated telomere maintenance plays a crucial role in hematopoiesis. Supporting evidence is underscored by recent findings of mutations in genes involved in telomerase-mediated telomere maintenance that contribute to the pathogenesis of bone marrow failure syndromes. More recently described telomere-independent functions of telomerase are also likely to contribute to both normal hematopoiesis and hematologic diseases. The high levels of telomerase detected in aggressive leukemias have fueled fervent investigation into diverse approaches to targeting telomerase in hematologic malignancies. Successful preclinical investigations that employed genetic strategies, oligonucleotides, small-molecule inhibitors and immunotherapy have resulted in a rapid translation to clinical trials. Further investigation of telomere-independent functions of telomerase and detailed preclinical studies of telomerase inhibition in both normal and malignant hematopoiesis will be invaluable for refining treatments to effectively and safely exploit telomerase as a therapeutic target in hematologic malignancies.


Assuntos
Neoplasias Hematológicas/genética , Telomerase/fisiologia , Animais , Neoplasias Hematológicas/metabolismo , Humanos , Telômero/metabolismo
18.
Cell Stem Cell ; 26(6): 804-805, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32502401

RESUMO

Most rare inherited telomere biology disorders and some common aging-related diseases are associated with shortened telomeres. In this issue of Cell Stem Cell, insights into one of the rarest genetic causes of these disorders led to the discovery (Nagpal et al., 2020) of small molecules that lengthen telomeres.


Assuntos
Telomerase , Telômero , Humanos , Células-Tronco/metabolismo , Telomerase/metabolismo , Telômero/genética , Telômero/metabolismo , Encurtamento do Telômero
19.
Sci Adv ; 5(10): eaav4409, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31616780

RESUMO

Telomerase is a ribonucleoprotein complex that catalyzes addition of telomeric DNA repeats to maintain telomeres in replicating cells. Here, we demonstrate that the telomerase protein hTERT performs an additional role at telomeres that is independent of telomerase catalytic activity yet essential for telomere integrity and cell proliferation. Short-term depletion of endogenous hTERT reduced the levels of heat shock protein 70 (Hsp70-1) and the telomere protective protein Apollo at telomeres, and induced telomere deprotection and cell cycle arrest, in the absence of telomere shortening. Short-term expression of hTERT promoted colocalization of Hsp70-1 with telomeres and Apollo and reduced numbers of deprotected telomeres, in a manner independent of telomerase catalytic activity. These data reveal a previously unidentified noncanonical function of hTERT that promotes formation of a telomere protective complex containing Hsp70-1 and Apollo and is essential for sustained proliferation of telomerase-positive cancer cells, likely contributing to the known cancer-promoting effects of both hTERT and Hsp70-1.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Neoplasias/metabolismo , Telomerase/metabolismo , Telômero/metabolismo , Linhagem Celular Tumoral , Dano ao DNA , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP70/genética , Humanos , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Neoplasias/genética , Telomerase/genética
20.
Artigo em Inglês | MEDLINE | ID: mdl-32914017

RESUMO

PURPOSE: Before anaplastic lymphoma kinase (ALK) inhibitors, treatment options for ALK-positive inflammatory myofibroblastic tumors (AP-IMTs) were unsatisfactory. We retrospectively analyzed the outcome of patients with AP-IMT treated with crizotinib to document response, toxicity, survival, and features associated with relapse. METHODS: The cohort comprised eight patients with AP-IMT treated with crizotinib and surgery. Outcome measures were progression-free and overall survival after commencing crizotinib, treatment-related toxicities, features associated with relapse, outcome after relapse, and outcome after ceasing crizotinib. RESULTS: The median follow-up after commencing crizotinib was 3 years (range, 0.9 to 5.5 years). The major toxicity was neutropenia. All patients responded to crizotinib. Five were able to discontinue therapy without recurrence (median treatment duration, 1 year; range, 0.2 to 3.0 years); one continues on crizotinib. Two critically ill patients with initial complete response experienced relapse while on therapy. Both harbored RANBP2-ALK fusions and responded to alternative ALK inhibitors; one ultimately died as a result of progressive disease, whereas the other remains alive on treatment. Progression-free and overall survival since commencement of crizotinib is 0.75 ± 0.15% and 0.83 ± 0.15%, respectively. CONCLUSION: We confirm acceptable toxicity and excellent disease control in patients with AP-IMT treated with crizotinib, which may be ceased without recurrence in most. Relapses occurred in two of three patients with RANBP2-ALK translocated IMT, which suggests that such patients require additional therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA