RESUMO
Aquaculture is the fastest-growing farmed food sector and will soon become the primary source of fish and shellfish for human diets. In contrast to crop and livestock production, aquaculture production is derived from numerous, exceptionally diverse species that are typically in the early stages of domestication. Genetic improvement of production traits via well-designed, managed breeding programmes has great potential to help meet the rising seafood demand driven by human population growth. Supported by continuous advances in sequencing and bioinformatics, genomics is increasingly being applied across the broad range of aquaculture species and at all stages of the domestication process to optimize selective breeding. In the future, combining genomic selection with biotechnological innovations, such as genome editing and surrogate broodstock technologies, may further expedite genetic improvement in aquaculture.
Assuntos
Aquicultura , Cruzamento , Genômica , Adaptação Biológica , Animais , Animais Domésticos , Animais Selvagens , Biodiversidade , Domesticação , Meio Ambiente , Epigênese Genética , Edição de Genes , Interação Gene-Ambiente , Predisposição Genética para Doença , Genoma , Genômica/métodos , Seleção Genética , Seleção ArtificialRESUMO
Single-cell transcriptomics is the current gold standard for global gene expression profiling, not only in mammals and model species, but also in non-model fish species. This is a rapidly expanding field, creating a deeper understanding of tissue heterogeneity and the distinct functions of individual cells, making it possible to explore the complexities of immunology and gene expression on a highly resolved level. In this study, we compared two single cell transcriptomic approaches to investigate cellular heterogeneity within the head kidney of healthy farmed Atlantic salmon (Salmo salar). We compared 14,149 cell transcriptomes assayed by single cell RNA-seq (scRNA-seq) with 18,067 nuclei transcriptomes captured by single nucleus RNA-Seq (snRNA-seq). Both approaches detected eight major cell populations in common: granulocytes, heamatopoietic stem cells, erythrocytes, mononuclear phagocytes, thrombocytes, B cells, NK-like cells, and T cells. Four additional cell types, endothelial, epithelial, interrenal, and mesenchymal cells, were detected in the snRNA-seq dataset, but appeared to be lost during preparation of the single cell suspension submitted for scRNA-seq library generation. We identified additional heterogeneity and subpopulations within the B cells, T cells, and endothelial cells, and revealed developmental trajectories of heamatopoietic stem cells into differentiated granulocyte and mononuclear phagocyte populations. Gene expression profiles of B cell subtypes revealed distinct IgM and IgT-skewed resting B cell lineages and provided insights into the regulation of B cell lymphopoiesis. The analysis revealed eleven T cell sub-populations, displaying a level of T cell heterogeneity in salmon head kidney comparable to that observed in mammals, including distinct subsets of cd4/cd8-negative T cells, such as tcrγ positive, progenitor-like, and cytotoxic cells. Although snRNA-seq and scRNA-seq were both useful to resolve cell type-specific expression in the Atlantic salmon head kidney, the snRNA-seq pipeline was overall more robust in identifying several cell types and subpopulations. While scRNA-seq displayed higher levels of ribosomal and mitochondrial genes, snRNA-seq captured more transcription factor genes. However, only scRNA-seq-generated data was useful for cell trajectory inference within the myeloid lineage. In conclusion, this study systematically outlines the relative merits of scRNA-seq and snRNA-seq in Atlantic salmon, enhances understanding of teleost immune cell lineages, and provides a comprehensive list of markers for identifying major cell populations in the head kidney with significant immune relevance.
Assuntos
Salmo salar , Animais , Salmo salar/genética , Regulação da Expressão Gênica , Rim Cefálico , Células Endoteliais , Perfilação da Expressão Gênica/veterinária , Transcriptoma , RNA Nuclear Pequeno , MamíferosRESUMO
The spleen is a conserved secondary lymphoid organ that emerged in parallel to adaptive immunity in early jawed vertebrates. Recent studies have applied single cell transcriptomics to reveal the cellular composition of spleen in several species, cataloguing diverse immune cell types and subpopulations. In this study, 51,119 spleen nuclei transcriptomes were comprehensively investigated in the commercially important teleost Atlantic salmon (Salmo salar L.), contrasting control animals with those challenged with the bacterial pathogen Aeromonas salmonicida. We identified clusters of nuclei representing the expected major cell types, namely T cells, B cells, natural killer-like cells, granulocytes, mononuclear phagocytes, endothelial cells, mesenchymal cells, erythrocytes and thrombocytes. We discovered heterogeneity within several immune lineages, providing evidence for resident macrophages and melanomacrophages, infiltrating monocytes, several candidate dendritic cell subpopulations, and B cells at distinct stages of differentiation, including plasma cells and an igt + subset. We provide evidence for twelve candidate T cell subsets, including cd4+ T helper and regulatory T cells, one cd8+ subset, three γδT subsets, and populations double negative for cd4 and cd8. The number of genes showing differential expression during the early stages of Aeromonas infection was highly variable across immune cell types, with the largest changes observed in macrophages and infiltrating monocytes, followed by resting mature B cells. Our analysis provides evidence for a local inflammatory response to infection alongside B cell maturation in the spleen, and upregulation of ccr9 genes in igt + B cells, T helper and cd8+ cells, and monocytes, consistent with the recruitment of immune cell populations to the gut to deal with Aeromonas infection. Overall, this study provides a new cell-resolved perspective of the immune actions of Atlantic salmon spleen, highlighting extensive heterogeneity hidden to bulk transcriptomics. We further provide a large catalogue of cell-specific marker genes that can be leveraged to further explore the function and structural organization of the salmonid immune system.
Assuntos
Infecções Bacterianas , Doenças dos Peixes , Salmo salar , Animais , Baço , Células EndoteliaisRESUMO
Antiviral innate immunity is orchestrated by the interferon system, which appeared in ancestors of jawed vertebrates. Interferon upregulation induces hundreds of interferon-stimulated-genes (ISGs) with effector or regulatory functions. Here we investigated the evolutionary diversification of ISG responses through comparison of two salmonid fishes, accounting for the impact of sequential whole genome duplications ancestral to teleosts and salmonids. We analysed the transcriptomic response of the IFN pathway in the head kidney of rainbow trout and Atlantic salmon, which separated 25-30 Mya. We identified a large set of ISGs conserved in both species and cross-referenced them with zebrafish and human ISGs. In contrast, around one-third of salmonid ISG lacked orthologs in human, mouse, chicken or frog, and often between rainbow trout and Atlantic salmon, revealing a fast-evolving, lineage-specific arm of the antiviral response. This study also provides a key resource for in-depth functional analysis of ISGs in salmonids of commercial significance.
Assuntos
Oncorhynchus mykiss , Peixe-Zebra , Humanos , Animais , Camundongos , Peixe-Zebra/genética , Genoma , Oncorhynchus mykiss/genética , Interferons/genética , Antivirais/farmacologiaRESUMO
The long-term evolutionary impacts of whole-genome duplication (WGD) are strongly influenced by the ensuing rediploidization process. Following autopolyploidization, rediploidization involves a transition from tetraploid to diploid meiotic pairing, allowing duplicated genes (ohnologs) to diverge genetically and functionally. Our understanding of autopolyploid rediploidization has been informed by a WGD event ancestral to salmonid fishes, where large genomic regions are characterized by temporally delayed rediploidization, allowing lineage-specific ohnolog sequence divergence in the major salmonid clades. Here, we investigate the long-term outcomes of autopolyploid rediploidization at genome-wide resolution, exploiting a recent "explosion" of salmonid genome assemblies, including a new genome sequence for the huchen (Hucho hucho). We developed a genome alignment approach to capture duplicated regions across multiple species, allowing us to create 121,864 phylogenetic trees describing genome-wide ohnolog divergence across salmonid evolution. Using molecular clock analysis, we show that 61% of the ancestral salmonid genome experienced an initial "wave" of rediploidization in the late Cretaceous (85-106 Ma). This was followed by a period of relative genomic stasis lasting 17-39 My, where much of the genome remained tetraploid. A second rediploidization wave began in the early Eocene and proceeded alongside species diversification, generating predictable patterns of lineage-specific ohnolog divergence, scaling in complexity with the number of speciation events. Using gene set enrichment, gene expression, and codon-based selection analyses, we provide insights into potential functional outcomes of delayed rediploidization. This study enhances our understanding of delayed autopolyploid rediploidization and has broad implications for future studies of WGD events.
Assuntos
Salmonidae , Animais , Evolução Molecular , Duplicação Gênica , Genoma , Filogenia , Salmonidae/genéticaRESUMO
In mammals, haptoglobin (Hp) is an acute-phase plasma protein that binds with high affinity to hemoglobin (Hb) released by intravascular hemolysis. The resultant Hp-Hb complexes are bound and cleared by the scavenger receptor CD163, limiting Hb-induced oxidative damage. In this study, we show that Hp is a divergent member of the complement-initiating MASP family of proteins, which emerged in the ancestor of jawed vertebrates. We demonstrate that Hp has been independently lost from multiple vertebrate lineages, that characterized Hb-interacting residues of mammals are poorly conserved in nonmammalian species maintaining Hp, and that the extended loop 3 region of Hp, which mediates CD163 binding, is present only in mammals. We show that the Hb-binding ability of cartilaginous fish (nurse shark, Ginglymostoma cirratum; small-spotted catshark, Scyliorhinus canicula; and thornback ray, Raja clavata) and teleost fish (rainbow trout, Oncorhynchus mykiss) Hp is species specific, and where binding does occur it is likely mediated through a different structural mechanism to mammalian Hp. The continued, high-level expression of Hp in cartilaginous fishes in which Hb binding is not evident signals that Hp has (an)other, yet unstudied, role(s) in these species. Previous work indicates that mammalian Hp also has secondary, immunomodulatory functions that are independent of Hb binding; our work suggests these may be remnants of evolutionary more ancient functions, retained after Hb removal became the primary role of Hp in mammals.
Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Proteínas de Peixes/metabolismo , Haptoglobinas/metabolismo , Hemoglobinas/metabolismo , Mamíferos/imunologia , Oncorhynchus mykiss/imunologia , Receptores de Superfície Celular/metabolismo , Tubarões/imunologia , Proteínas de Fase Aguda , Animais , Evolução Biológica , Clonagem Molecular , Proteínas de Peixes/genética , Genoma/genética , Haptoglobinas/genética , Hemólise , Humanos , Serina Proteases Associadas a Proteína de Ligação a Manose/genética , Filogenia , Ligação Proteica , Especificidade da EspécieRESUMO
Salmon pancreas disease virus, more commonly known as salmonid alphavirus (SAV), is a single-stranded positive sense RNA virus and the causative agent of pancreas disease and sleeping disease in salmonids. In this study, a unique strain of SAV previously isolated from ballan wrasse was subjected to whole genome sequencing using nanopore sequencing. In order to accurately examine the evolutionary history of this strain in comparison to other SAV strains, a partitioned phylogenetic analysis was performed to account for variation in the rate of evolution for both individual genes and codon positions. Partitioning the genome alignments almost doubled the observed branch lengths in the phylogenetic tree when compared to the more common approach of applying one model of substitution across the genome and significantly increased the statistical fit of the best-fitting models of nucleotide substitution. Based on the genomic data, a valid case can be made for the viral strain examined in this study to be considered a new SAV genotype. In addition, this study adds to a growing number of studies in which SAV has been found to infect non-salmonid fish, and as such we have suggested that the viral species name be amended to the more inclusive 'piscine alphavirus'.
Assuntos
Infecções por Alphavirus , Alphavirus , Doenças dos Peixes , Nanoporos , Salmo salar , Salmonidae , Alphavirus/genética , Infecções por Alphavirus/veterinária , Animais , Genótipo , Filogenia , Sequenciamento Completo do Genoma/veterináriaRESUMO
BACKGROUND: Transcriptomic responses to immune stimulation were investigated in coho salmon (Oncorhynchus kisutch) with distinct growth phenotypes. Wild-type fish were contrasted to strains with accelerated growth arising either from selective breeding (i.e. domestication) or genetic modification. Such distinct routes to accelerated growth may have unique implications for relationships and/or trade-offs between growth and immune function. RESULTS: RNA-Seq was performed on liver and head kidney in four 'growth response groups' injected with polyinosinic-polycytidylic acid (Poly I:C; viral mimic), peptidoglycan (PGN; bacterial mimic) or PBS (control). These groups were: 1) 'W': wild-type, 2) 'TF': growth hormone (GH) transgenic salmon with ~ 3-fold higher growth-rate than W, 3) 'TR': GH transgenic fish ration restricted to possess a growth-rate equal to W, and 4) 'D': domesticated non-transgenic fish showing growth-rate intermediate to W and TF. D and TF showed a higher similarity in transcriptomic response compared to W and TR. Several immune genes showed constitutive expression differences among growth response groups, including perforin 1 and C-C motif chemokine 19-like. Among the affected immune pathways, most were up-regulated by Poly I:C and PGN. In response to PGN, the c-type lectin receptor signalling pathway responded uniquely in TF and TR. In response to stimulation with both immune mimics, TR responded more strongly than other groups. Further, group-specific pathway responses to PGN stimulation included NOD-like receptor signalling in W and platelet activation in TR. TF consistently showed the most attenuated immune response relative to W, and more DEGs were apparent in TR than TF and D relative to W, suggesting that a non-satiating ration coupled with elevated circulating GH levels may cause TR to possess enhanced immune capabilities. Alternatively, TF and D salmon are prevented from acquiring the same level of immune response as TR due to direction of energy to high overall somatic growth. Further study of the effects of ration restriction in growth-modified fishes is warranted. CONCLUSIONS: These findings improve our understanding of the pleiotropic effects of growth modification on the immunological responses of fish, revealing unique immune pathway responses depending on the mechanism of growth acceleration and nutritional availability.
Assuntos
Hormônio do Crescimento/genética , Imunomodulação/genética , Oncorhynchus kisutch/genética , Oncorhynchus kisutch/imunologia , Transcriptoma , Animais , Animais Geneticamente Modificados , Cruzamento , Biologia Computacional/métodos , Domesticação , Perfilação da Expressão Gênica , Oncorhynchus kisutch/crescimento & desenvolvimento , Oncorhynchus kisutch/metabolismo , Especificidade de ÓrgãosRESUMO
BACKGROUND: Recently developed genome resources in Salmonid fish provides tools for studying the genomics underlying a wide range of properties including life history trait variation in the wild, economically important traits in aquaculture and the evolutionary consequences of whole genome duplications. Although genome assemblies now exist for a number of salmonid species, the lack of regulatory annotations are holding back our mechanistic understanding of how genetic variation in non-coding regulatory regions affect gene expression and the downstream phenotypic effects. RESULTS: We present SalMotifDB, a database and associated web and R interface for the analysis of transcription factors (TFs) and their cis-regulatory binding sites in five salmonid genomes. SalMotifDB integrates TF-binding site information for 3072 non-redundant DNA patterns (motifs) assembled from a large number of metazoan motif databases. Through motif matching and TF prediction, we have used these multi-species databases to construct putative regulatory networks in salmonid species. The utility of SalMotifDB is demonstrated by showing that key lipid metabolism regulators are predicted to regulate a set of genes affected by different lipid and fatty acid content in the feed, and by showing that our motif database explains a significant proportion of gene expression divergence in gene duplicates originating from the salmonid specific whole genome duplication. CONCLUSIONS: SalMotifDB is an effective tool for analyzing transcription factors, their binding sites and the resulting gene regulatory networks in salmonid species, and will be an important tool for gaining a better mechanistic understanding of gene regulation and the associated phenotypes in salmonids. SalMotifDB is available at https://salmobase.org/apps/SalMotifDB .
Assuntos
Bases de Dados Genéticas , Genômica/métodos , Salmonidae/genética , Fatores de Transcrição/metabolismo , Animais , DNA/química , Duplicação Gênica/genética , Redes Reguladoras de Genes , Metabolismo dos Lipídeos/genética , Motivos de Nucleotídeos , Ligação ProteicaRESUMO
BACKGROUND: The cartilaginous fishes diverged from other jawed vertebrates ~ 450 million years ago (mya). Despite this key evolutionary position, the only high-quality cartilaginous fish genome available is for the elephant shark (Callorhinchus milii), a chimaera whose ancestors split from the elasmobranch lineage ~ 420 mya. Initial analysis of this resource led to proposals that key components of the cartilaginous fish adaptive immune system, most notably their array of T cell subsets, was primitive compared to mammals. This proposal is at odds with the robust, antigen-specific antibody responses reported in elasmobranchs following immunization. To explore this discrepancy, we generated a multi-tissue transcriptome for small-spotted catshark (Scyliorhinus canicula), a tractable elasmobranch model for functional studies. We searched this, and other newly available sequence datasets, for CD4+ T cell subset-defining genes, aiming to confirm the presence or absence of each subset in cartilaginous fishes. RESULTS: We generated a new transcriptome based on a normalised, multi-tissue RNA pool, aiming to maximise representation of tissue-specific and lowly expressed genes. We utilized multiple transcriptomic datasets and assembly variants in phylogenetic reconstructions to unambiguously identify several T cell subset-specific molecules in cartilaginous fishes for the first time, including interleukins, interleukin receptors, and key transcription factors. Our results reveal the inability of standard phylogenetic reconstruction approaches to capture the site-specific evolutionary processes of fast-evolving immune genes but show that site-heterogeneous mixture models can adequately do so. CONCLUSIONS: Our analyses reveal that cartilaginous fishes are capable of producing a range of CD4+ T cell subsets comparable to that of mammals. Further, that the key molecules required for the differentiation and functioning of these subsets existed in the jawed vertebrate ancestor. Additionally, we highlight the importance of considering phylogenetic diversity and, where possible, utilizing multiple datasets for individual species, to accurately infer gene presence or absence at higher taxonomic levels.
Assuntos
Arcada Osseodentária/anatomia & histologia , Subpopulações de Linfócitos/metabolismo , Filogenia , Linfócitos T Reguladores/metabolismo , Transcriptoma/genética , Vertebrados/genética , Sequência de Aminoácidos , Animais , Evolução Biológica , Feminino , Peixes/genética , Genoma , Tubarões/genética , Fatores de Transcrição/química , Fatores de Transcrição/metabolismoRESUMO
BACKGROUND: High-throughput proteomics was used to determine the role of the fish liver in defense responses to bacterial infection. This was done using a rainbow trout (Oncorhynchus mykiss) model following infection with Aeromonas salmonicida, the causative agent of furunculosis. The vertebrate liver has multifaceted functions in innate immunity, metabolism, and growth; we hypothesize this tissue serves a dual role in supporting host defense in parallel to metabolic adjustments that promote effective immune function. While past studies have reported mRNA responses to A. salmonicida in salmonids, the impact of bacterial infection on the liver proteome remains uncharacterized in fish. RESULTS: Rainbow trout were injected with A. salmonicida or PBS (control) and liver extracted 48 h later for analysis on a hybrid quadrupole-Orbitrap mass spectrometer. A label-free method was used for protein abundance profiling, which revealed a strong innate immune response along with evidence to support parallel rewiring of metabolic and growth systems. 3076 proteins were initially identified against all proteins (n = 71,293 RefSeq proteins) annotated in a single high-quality rainbow trout reference genome, of which 2433 were maintained for analysis post-quality filtering. Among the 2433 proteins, 109 showed significant differential abundance following A. salmonicida challenge, including many upregulated complement system and acute phase response proteins, in addition to molecules with putative functions that may support metabolic re-adjustments. We also identified novel expansions in the complement system due to gene and whole genome duplication events in salmonid evolutionary history, including eight C3 proteins showing differential changes in abundance. CONCLUSIONS: This study provides the first high-throughput proteomic examination of the fish liver in response to bacterial challenge, revealing novel markers for the host defense response, and evidence of metabolic remodeling in conjunction with activation of innate immunity.
Assuntos
Aeromonas salmonicida/fisiologia , Proteínas de Peixes/metabolismo , Fígado/metabolismo , Fígado/microbiologia , Oncorhynchus mykiss/metabolismo , Oncorhynchus mykiss/microbiologia , Proteômica , Animais , Ontologia Genética , Fígado/imunologia , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/imunologia , Mapeamento de Interação de ProteínasRESUMO
Suppression of growth during infection may aid resource allocation towards effective immune function. Past work supporting this hypothesis in salmonid fish revealed an immune-responsive regulation of the insulin-like growth factor (IGF) system - an endocrine pathway downstream of growth hormone (GH). Skeletal muscle is the main target for growth and energetic storage in fish, yet little is known about how its growth is regulated during an immune response. We addressed this knowledge gap by characterising muscle immune responses in size-matched coho salmon (Oncorhynchus kisutch) achieving different growth rates. We compared a wild-type strain with two GH transgenic groups from the same genetic background achieving either maximal or suppressed growth - a design separating GH's direct effects from its influence on growth rate and nutritional state. Fish were sampled 30â h post-injection with phosphate-buffered saline (control) or mimics of bacterial or viral infection. We quantified mRNA expression levels for genes from the GH, GH receptor, IGF hormone, IGF1 receptor and IGF-binding protein families, along with immune genes involved in inflammatory or antiviral responses and muscle growth status marker genes. We demonstrate dampened immune function in GH transgenics compared with wild-type. The muscle of GH transgenics achieving rapid growth showed no detectable antiviral response, coupled with evidence of a constitutive inflammatory state. GH and IGF system gene expression was strongly altered by GH transgenesis and fast growth, both for baseline expression and responses to immune stimulation. Thus, GH transgenesis strongly disrupts muscle immune status and normal GH and IGF system expression responses to immune stimulation.
Assuntos
Hormônio do Crescimento/metabolismo , Imunidade Inata/genética , Músculo Esquelético/imunologia , Oncorhynchus kisutch/imunologia , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/crescimento & desenvolvimento , Animais Geneticamente Modificados/imunologia , Técnicas de Transferência de Genes/veterinária , Hormônio do Crescimento/genética , Oncorhynchus kisutch/genética , Oncorhynchus kisutch/crescimento & desenvolvimento , Receptor Cross-Talk/fisiologiaRESUMO
The Thaumarchaeota is an abundant and ubiquitous phylum of archaea that plays a major role in the global nitrogen cycle. Previous analyses of the ammonia monooxygenase gene amoA suggest that pH is an important driver of niche specialization in these organisms. Although the ecological distribution and ecophysiology of extant Thaumarchaeota have been studied extensively, the evolutionary rise of these prokaryotes to ecological dominance in many habitats remains poorly understood. To characterize processes leading to their diversification, we investigated coevolutionary relationships between amoA, a conserved marker gene for Thaumarchaeota, and soil characteristics, by using deep sequencing and comprehensive environmental data in Bayesian comparative phylogenetics. These analyses reveal a large and rapid increase in diversification rates during early thaumarchaeotal evolution; this finding was verified by independent analyses of 16S rRNA. Our findings suggest that the entire Thaumarchaeota diversification regime was strikingly coupled to pH adaptation but less clearly correlated with several other tested environmental factors. Interestingly, the early radiation event coincided with a period of pH adaptation that enabled the terrestrial Thaumarchaeota ancestor to initially move from neutral to more acidic and alkaline conditions. In contrast to classic evolutionary models, whereby niches become rapidly filled after adaptive radiation, global diversification rates have remained stably high in Thaumarchaeota during the past 400-700 million years, suggesting an ongoing high rate of niche formation or switching for these microbes. Our study highlights the enduring importance of environmental adaptation during thaumarchaeotal evolution and, to our knowledge, is the first to link evolutionary diversification to environmental adaptation in a prokaryotic phylum.
Assuntos
Archaea/fisiologia , Evolução Biológica , Oxirredutases/genética , Solo/química , Amônia/química , Archaea/enzimologia , Archaea/genética , Teorema de Bayes , Análise por Conglomerados , Evolução Molecular , Concentração de Íons de Hidrogênio , Conformação Molecular , Nitrogênio/química , Oxirredutases/metabolismo , Oxigênio/química , Filogenia , RNA Ribossômico 16S/metabolismo , Proteínas Recombinantes/químicaRESUMO
We describe an emerging initiative - the 'Functional Annotation of All Salmonid Genomes' (FAASG), which will leverage the extensive trait diversity that has evolved since a whole genome duplication event in the salmonid ancestor, to develop an integrative understanding of the functional genomic basis of phenotypic variation. The outcomes of FAASG will have diverse applications, ranging from improved understanding of genome evolution, to improving the efficiency and sustainability of aquaculture production, supporting the future of fundamental and applied research in an iconic fish lineage of major societal importance.
Assuntos
Aquicultura , Conservação dos Recursos Naturais , Genômica , Internacionalidade , Anotação de Sequência Molecular , Salmonidae/genética , Animais , Evolução Molecular , Genômica/economia , Genômica/normas , Fenótipo , FilogeniaRESUMO
Much attention has been given to insulin-like growth factor (Igf) pathways that regulate the balance of skeletal muscle protein synthesis and breakdown in response to a range of extrinsic and intrinsic signals. However, we have a less complete understanding of how the same signals modulate muscle mass upstream of such signalling, through a family of functionally-diverse Igf-binding proteins (Igfbps) that modify the availability of Igfs to the cell receptor Igf1r. We exposed cultured myotubes from Atlantic salmon (Salmo salar L.) to treatments recapturing three catabolic signals: inflammation (interleukin-1ß), stress (dexamethasone) and fasting (amino acid deprivation), plus one anabolic signal: recovery of muscle mass post-fasting (supplementation of fasted myotubes with Igf-I and amino acids). The intended phenotype of treatments was confirmed by significant changes in myotube diameter and immunofluorescent staining of structural proteins. We quantified the mRNA-level regulation of the full expressed Igf and Igfbp gene complement across a post-treatment time course, along with marker genes for muscle structural protein synthesis, as well as muscle breakdown, via the ubiquitin-proteasome and autophagy systems. Our results highlight complex, non-overlapping responses of Igfbp family members to the different treatments, suggesting that the profile of expressed Igfbps is differentially regulated by distinct signals promoting similar muscle remodelling phenotypes. We also demonstrate divergent regulation of salmonid-specific gene duplicates of igfbp5b1 and igfbp5b2 under distinct catabolic and anabolic conditions. Overall, this study increases our understanding of the regulation of Igfbp genes in response to signals that promote remodelling of skeletal muscle.
Assuntos
Regulação da Expressão Gênica , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Fibras Musculares Esqueléticas/metabolismo , Salmo salar/genética , Salmo salar/metabolismo , Aminoácidos/deficiência , Animais , Células Cultivadas , Dexametasona/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Interleucina-1beta/farmacologia , Modelos Lineares , Fibras Musculares Esqueléticas/efeitos dos fármacos , Proteínas Musculares/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
Microbes are abundant in nature and often highly adapted to local conditions. While great progress has been made in understanding the ecological factors driving their distribution in complex environments, the underpinning molecular-evolutionary mechanisms are rarely dissected. Therefore, we scrutinized the coupling of environmental and molecular adaptation in Thaumarchaeota, an abundant archaeal phylum with a key role in ammonia oxidation. These microbes are adapted to a diverse spectrum of environmental conditions, with pH being a key factor shaping their contemporary distribution and evolutionary diversification. We integrated high-throughput sequencing data spanning a broad representation of ammonia-oxidizing terrestrial lineages with codon modelling analyses, testing the hypothesis that ammonia monooxygenase subunit A (AmoA) - a highly conserved membrane protein crucial for ammonia oxidation and classical marker in microbial ecology - underwent adaptation during specialization to extreme pH environments. While purifying selection has been an important factor limiting AmoA evolution, we identified episodic shifts in selective pressure at the base of two phylogenetically distant lineages that independently adapted to acidic conditions and subsequently gained lasting ecological success. This involved nonconvergent selective mechanisms (positive selection vs. selection acting on variants fixed during an episode of relaxed selection) leading to unique sets of amino acid substitutions that remained fixed across the radiation of both acidophilic lineages, highlighting persistent adaptive value in acidic environments. Our data demonstrates distinct trajectories of AmoA evolution despite convergent phenotypic adaptation, suggesting that microbial environmental specialization can be associated with diverse signals of molecular adaptation, even for marker genes employed routinely by microbial ecologists.
Assuntos
Archaea/genética , Proteínas Arqueais/genética , Evolução Molecular , Oxirredutases/genética , Adaptação Fisiológica/genética , Amônia/metabolismo , Archaea/enzimologia , Meio Ambiente , Concentração de Íons de Hidrogênio , Filogenia , Seleção GenéticaRESUMO
Whole-genome duplication (WGD) was experienced twice by the vertebrate ancestor (2 rounds; 2R), again by the teleost fish ancestor (3R) and most recently in certain teleost lineages (4R). Consequently, vertebrate gene families are often expanded in 3R and 4R genomes. Arguably, many types of "functional divergence" present across 2R gene families will exceed that between 3R/4R paralogs of genes comprising 2R families. Accordingly, 4R offers a form of replication of 2R. Examining whether this concept has implications for molecular evolutionary research, we studied insulin-like growth factor (IGF) binding proteins (IGFBPs), whose six 2R family members carry IGF hormones and regulate interactions between IGFs and IGF1-receptors (IGF1Rs). Using phylogenomic approaches, we resolved the complete IGFBP repertoire of 4R-derived salmonid fishes (19 genes; 13 more than human) and established evolutionary relationships/nomenclature with respect to WGDs. Traits central to IGFBP action were determined for all genes, including atomic interactions in IGFBP-IGF1/IGF2 complexes regulating IGF-IGF1R binding. Using statistical methods, we demonstrate that attributes of these protein interfaces are overwhelming a product of 2R IGFBP family membership, explain 49-68% of variation in IGFBP mRNA concentration in several different tissues, and strongly predict the strength and direction of IGFBP transcriptional regulation under differing nutritional states. The results support a model where vertebrate IGFBP family members evolved divergent structural attributes to provide distinct competition for IGFs with IGF1Rs, predisposing different functions in the regulation of IGF signaling. Evolution of gene expression then acted to ensure the appropriate physiological production of IGFBPs according to their structural specializations, leading to optimal IGF-signaling according to nutritional-status and the endocrine/local mode of action. This study demonstrates that relatively recent gene family expansion can facilitate inference of functional evolution within ancient genetic systems.
Assuntos
Evolução Molecular , Duplicação Gênica/genética , Genoma/genética , Salmonidae/genética , Somatomedinas/genética , Vertebrados/genética , Animais , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Receptores de Somatomedina/genéticaRESUMO
Whole genome duplication (WGD) is often considered to be mechanistically associated with species diversification. Such ideas have been anecdotally attached to a WGD at the stem of the salmonid fish family, but remain untested. Here, we characterized an extensive set of gene paralogues retained from the salmonid WGD, in species covering the major lineages (subfamilies Salmoninae, Thymallinae and Coregoninae). By combining the data in calibrated relaxed molecular clock analyses, we provide the first well-constrained and direct estimate for the timing of the salmonid WGD. Our results suggest that the event occurred no later in time than 88 Ma and that 40-50 Myr passed subsequently until the subfamilies diverged. We also recovered a Thymallinae-Coregoninae sister relationship with maximal support. Comparative phylogenetic tests demonstrated that salmonid diversification patterns are closely allied in time with the continuous climatic cooling that followed the Eocene-Oligocene transition, with the highest diversification rates coinciding with recent ice ages. Further tests revealed considerably higher speciation rates in lineages that evolved anadromy--the physiological capacity to migrate between fresh and seawater--than in sister groups that retained the ancestral state of freshwater residency. Anadromy, which probably evolved in response to climatic cooling, is an established catalyst of genetic isolation, particularly during environmental perturbations (for example, glaciation cycles). We thus conclude that climate-linked ecophysiological factors, rather than WGD, were the primary drivers of salmonid diversification.
Assuntos
Especiação Genética , Genoma , Salmonidae/genética , Animais , Duplicação Gênica , Dados de Sequência Molecular , FilogeniaRESUMO
Myoglobin (Mb) is the classic vertebrate oxygen-binding protein present in aerobic striated muscles. It functions principally in oxygen delivery and provides muscle with its characteristic red colour. Members of the Antarctic icefish family (Channichthyidae) are widely thought to be extraordinary for lacking cardiac Mb expression, a fact that has been attributed to their low metabolic rate and unusual evolutionary history. Here, we report that cardiac Mb deficit, associated with pale heart colour, has evolved repeatedly during teleost evolution. This trait affects both gill- and air-breathing species from temperate to tropical habitats across a full range of salinities. Cardiac Mb deficit results from total pseudogenization in three-spined stickleback and is associated with a massive reduction in mRNA level in two species that evidently retain functional Mb. The results suggest that near or complete absence of Mb-assisted oxygen delivery to heart muscle is a common facet of teleost biodiversity, even affecting lineages with notable oxygen demands. We suggest that Mb deficit may affect how different teleost species deal with increased tissue oxygen demands arising under climate change.
Assuntos
Peixes/genética , Peixes/fisiologia , Miocárdio/metabolismo , Mioglobina/genética , Mioglobina/fisiologia , Perciformes/genética , Perciformes/fisiologia , Animais , Regiões Antárticas , Evolução Biológica , RNA Mensageiro/metabolismoRESUMO
Single cell genomics encompasses a suite of rapidly maturing technologies that measure the molecular profiles of individual cells within target samples. These approaches provide a large up-step in biological information compared to long-established 'bulk' methods that profile the average molecular profiles of all cells in a sample, and have led to transformative advances in understanding of cellular biology, particularly in humans and model organisms. The application of single cell genomics is fast expanding to non-model taxa, including aquaculture species, where numerous research applications are underway with many more envisaged. In this review, we highlight the potential transformative applications of single cell genomics in aquaculture research, considering barriers and potential solutions to the broad uptake of these technologies. Focusing on single cell transcriptomics, we outline considerations for experimental design, including the essential requirement to obtain high quality cells/nuclei for sequencing in ectothermic aquatic species. We further outline data analysis and bioinformatics considerations, tailored to studies with the under-characterized genomes of aquaculture species, where our knowledge of cellular heterogeneity and cell marker genes is immature. Overall, this review offers a useful source of knowledge for researchers aiming to apply single cell genomics to address biological challenges faced by the global aquaculture sector though an improved understanding of cell biology.