RESUMO
Understanding the sub-band gap luminescence in Ruddlesden-Popper 2D metal halide hybrid perovskites (2D HaPs) is essential for efficient charge injection and collection in optoelectronic devices. Still, its origins are still under debate with respect to the role of self-trapped excitons or radiative recombination via defect states. In this study, we characterized charge separation, recombination, and transport in single crystals, exfoliated layers, and polycrystalline thin films of butylammonium lead iodide (BA2PbI4), one of the most prominent 2D HaPs. We combined complementary defect- and exciton-sensitive methods such as photoluminescence (PL) spectroscopy, modulated and time-resolved surface photovoltage (SPV) spectroscopy, constant final state photoelectron yield spectroscopy (CFSYS), and constant light-induced magneto transport (CLIMAT), to demonstrate striking differences between charge separation induced by dissociation of excitons and by excitation of mobile charge carriers from defect states. Our results suggest that the broad sub-band gap emission in BA2PbI4 and other 2D HaPs is caused by radiative recombination via defect states (shallow as well as midgap states) rather than self-trapped excitons. Density functional theory (DFT) results show that common defects can readily occur and produce an energetic profile that agrees well with the experimental results. The DFT results suggest that the formation of iodine interstitials is the initial process leading to degradation, responsible for the emergence of midgap states, and that defect engineering will play a key role in enhancing the optoelectronic properties of 2D HaPs in the future.
RESUMO
Graphitic carbon nitride (gCN) materials have been shown to efficiently perform light-induced water splitting, carbon dioxide reduction, and environmental remediation in a cost-effective way. However, gCN suffers from rapid charge-carrier recombination, inefficient light absorption, and poor long-term stability which greatly hinders photocatalytic performance. To determine the underlying catalytic mechanisms and overall contributions that will improve performance, the electronic structure of gCN materials has been investigated using electron paramagnetic resonance (EPR) spectroscopy. Through lineshape analysis and relaxation behavior, evidence of two independent spin species were determined to be present in catalytically active gCN materials. These two contributions to the total lineshape respond independently to light exposure such that the previously established catalytically active spin system remains responsive while the newly observed, superimposed EPR signal is not increased during exposure to light. The time dependence of these two peaks present in gCN EPR spectra recorded sequentially in air over several months demonstrates a steady change in the electronic structure of the gCN framework over time. This light-independent, slowly evolving additional spin center is demonstrated to be the result of oxidative processes occurring as a result of exposure to the environment and is confirmed by forced oxidation experiments. This oxidized gCN exhibits lower H2 production rates and indicates quenching of the overall gCN catalytic activity over longer reaction times. A general model for the newly generated spin centers is given and strategies for the alleviation of oxidative products within the gCN framework are discussed in the context of improving photocatalytic activity over extended durations as required for future functional photocatalytic device development.
RESUMO
Stability issues could prevent lead halide perovskite solar cells (PSCs) from commercialization despite it having a comparable power conversion efficiency (PCE) to silicon solar cells. Overcoming drawbacks affecting their long-term stability is gaining incremental importance. Excess lead iodide (PbI2 ) causes perovskite degradation, although it aids in crystal growth and defect passivation. Herein, we synthesized functionalized oxo-graphene nanosheets (Dec-oxoG NSs) to effectively manage the excess PbI2 . Dec-oxoG NSs provide anchoring sites to bind the excess PbI2 and passivate perovskite grain boundaries, thereby reducing charge recombination loss and significantly boosting the extraction of free electrons. The inclusion of Dec-oxoG NSs leads to a PCE of 23.7 % in inverted (p-i-n) PSCs. The devices retain 93.8 % of their initial efficiency after 1,000â hours of tracking at maximum power points under continuous one-sun illumination and exhibit high stability under thermal and ambient conditions.
RESUMO
The excited-state dynamics of 6,13-bis(triisopropylsilylethynyl)pentacene is investigated to determine the role of excimer and aggregate formation in singlet fission in high-concentration solutions. Photoluminescence spectra were measured by excitation with the evanescent wave in total internal reflection, in order to avoid reabsorption effects. The spectra over nearly two magnitudes of concentration were nearly identical, with no evidence for excimer emission. Time-correlated single-photon counting measurements confirm that the fluorescence lifetime shortens with concentration. The observed rate constant grows at high concentrations, and this effect is modeled in terms of the hard-sphere radial distribution function. NMR measurements confirm that aggregation takes place with a binding constant of between 0.14 and 0.43 M-1. Transient absorption measurements are consistent with a diffusive encounter mechanism for singlet fission, with hints of more rapid singlet fission in aggregates at the highest concentration measured. These data show that excimers do not play the role of an emissive intermediate in exothermic singlet fission in solution and that, while aggregation occurs at higher concentrations, the mechanism of singlet fission remains dominated by diffusive encounters.
RESUMO
Inorganic-organic interfaces are important for enhancing the power conversion efficiency of silicon-based solar cells through singlet exciton fission (SF). We elucidated the structure of the first monolayers of tetracene (Tc), an SF molecule, on hydrogen-passivated Si(111) [H-Si(111)] and hydrogenated amorphous Si (a-Si:H) by combining near-edge X-ray absorption fine structure (NEXAFS) and X-ray photoelectron spectroscopy (XPS) experiments with density functional theory (DFT) calculations. For samples grown at or below substrate temperatures of 265 K, the resulting ultrathin Tc films are dominated by almost upright-standing molecules. The molecular arrangement is very similar to the Tc bulk phase, with only a slightly higher average angle between the conjugated molecular plane normal and the surface normal (α) around 77°. Judging from carbon K-edge X-ray absorption spectra, the orientation of the Tc molecules are almost identical when grown on H-Si(111) and a-Si:H substrates as well as for (sub)mono- to several-monolayer coverages. Annealing to room temperature, however, changes the film structure toward a smaller α of about 63°. A detailed DFT-assisted analysis suggests that this structural transition is correlated with a lower packing density and requires a well-chosen amount of thermal energy. Therefore, we attribute the resulting structure to a distinct monolayer configuration that features less inclined, but still well-ordered molecules. The larger overlap with the substrate wave functions makes this arrangement attractive for an optimized interfacial electron transfer in SF-assisted silicon solar cells.
RESUMO
We prepared triplet-triplet annihilation photon upconverters combining thin-film methylammonium lead iodide (MAPI) perovskite with a rubrene annihilator in a bilayer structure. Excitation of the perovskite film leads to delayed, upconverted photoluminescence emitted from the annihilator layer, with triplet excitation of the rubrene being driven by carriers excited in the perovskite layer. To better understand the connections between the semiconductor properties of the perovskite film and the upconversion efficiency, we deliberately varied the perovskite film properties by modifying two spin-coating conditions, namely, the choice of antisolvent and the antisolvent dripping time, and then studied the resulting photon upconversion performance with a standard annihilator layer. A stronger upconversion effect was exhibited when the perovskite films displayed brighter and more uniform photoluminescence. Both properties were sensitive to the antisolvent dripping time and were maximized for a dripping time of 20 s (measured relative to the end of the spin-coating program). Surprisingly, the choice of antisolvent had a significant effect on the upconversion performance, with anisole-treated films yielding on average a tenfold increase in upconversion intensity compared to the chlorobenzene-treated equivalent. This performance difference was correlated with the carrier lifetime in the perovskite film, which was 52 ns and 306 ns in the brightest chlorobenzene and anisole-treated films, respectively. Since the bulk properties of the anisole- and chlorobenzene-treated films were virtually identical, we concluded that differences in the defect density at the MAPI/rubrene interface, linked to the choice of antisolvent, must be responsible for the differing upconversion performance.
RESUMO
Photochemical upconversion uses sensitized triplet-triplet annihilation in bimolecular compositions to convert lower energy photons to higher energy photons. For high efficiency under low illumination, usually a high sensitizer concentration is desirable. However, here we show that the upconversion sensitizer can reduce the emitter triplet lifetime by dynamic quenching, with rate constants on the order 106 M-1 s-1, leading to diminishing returns beyond a certain concentration. These results serve as a warning to designers of photochemical upconvertors that higher concentrations of sensitizers are not necessarily beneficial to upconversion performance.
RESUMO
Crystalline surface-anchored metal-organic framework (SURMOF) thin films made from porphyrin-based organic linkers have recently been used in both photon upconversion and photovoltaic applications. While these studies showed promising results, the question of photostability in this organic-inorganic hybrid material has to be investigated before applications can be considered. Here, we combine steady-state photoluminescence, transient absorption, and time-resolved electron paramagnetic resonance spectroscopy to examine the effects of prolonged illumination on a palladium-porphyrin based SURMOF thin film. We find that phototreatment leads to a change in the material's photoresponse caused by the creation of stable products of photodecomposition - likely chlorin - inside the SURMOF structure. When the mobile triplet excitons encounter such a defect site, a short-lived (80 ns) cation-anion radical pair can be formed by electron transfer, wherein the charges are localized at a porphyrin and the photoproduct site, respectively.
RESUMO
Luminescent solar concentrators (LSCs) are an emerging technology that aims primarily to reduce the cost of solar energy, with great potential for building integrated photovoltaic (PV) structures. However, realizing LSCs with commercially viable efficiency is currently hindered by reabsorption losses. Here, we introduce an approach to reducing reabsorption as well as improving directional emission in LSCs by using stimulated emission. Light from a seed laser (potentially an inexpensive laser diode) passes through the entire area of the LSC panel, modifying the emission spectrum of excited dye molecules such that it is spectrally narrower, at wavelengths that minimize reabsorption to allow net gain in the system, and directed towards a small PV cell. A mathematical model, taking into account thermodynamic considerations, of such a system is presented which identifies key parameters and allows evaluation in terms of net effective output power.
RESUMO
The optical gain is measured in Perylene Red (PR)-doped polymethyl methacrylate (PMMA) slabs for copropagating and transverse pumping configurations based on a single-pass pump-probe method where a small signal is used as a probe beam. The gain is characterized in terms of the stimulated gain coefficient (g(S)) for both pump configurations. This material property determines the strength of pump absorption and coupling to the probe signal beam through stimulated emission. For copropagating pumping, g(S) was found to be (3.05±0.17)×10(-3) m/W for â¼0.05 mM PR-doped PMMA using a 633 nm probe laser, pumping with a 532 nm CW laser. For transverse pumping, g(S) was found to be (3.28±0.09)×10(-3) m/W for a â¼0.15 mM sample. The small difference in the gain coefficient is attributed to the difference in concentration. The stimulated gain coefficient, a material property of the gain medium independent of the pump configuration and experimental setup, offers a useful and convenient way to characterize the optical gain for solid-state lasers or amplifiers.
RESUMO
A new mechanism of charge photogeneration is demonstrated for the first time, based on organic molecular structures. This intermediate band approach, integrated into a dye-sensitised solar cell configuration is shown to generate charges upon illumination with low energy photons. Specifically 610 nm photoexcitation of Pt porphyrins, through a series of energy transfer steps and triplet-triplet annihilation, excites a higher energy absorption onset molecule, which is then capable of charge injection into TiO2. Transient absorption measurements reveal further detail of the processes involved.
RESUMO
All-perovskite tandem solar cells show great potential to enable the highest performance at reasonable costs for a viable market entry in the near future. In particular, wide-bandgap (WBG) perovskites with higher open-circuit voltage (VOC ) are essential to further improve the tandem solar cells' performance. Here, a new 1.8 eV bandgap triple-halide perovskite composition in conjunction with a piperazinium iodide (PI) surface treatment is developed. With structural analysis, it is found that the PI modifies the surface through a reduction of excess lead iodide in the perovskite and additionally penetrates the bulk. Constant light-induced magneto-transport measurements are applied to separately resolve charge carrier properties of electrons and holes. These measurements reveal a reduced deep trap state density, and improved steady-state carrier lifetime (factor 2.6) and diffusion lengths (factor 1.6). As a result, WBG PSCs achieve 1.36 V VOC , reaching 90% of the radiative limit. Combined with a 1.26 eV narrow bandgap (NBG) perovskite with a rubidium iodide additive, this enables a tandem cell with a certified scan efficiency of 27.5%.
RESUMO
Halide perovskite-based photon upconverters utilize perovskite thin films to sensitize triplet exciton formation in a small-molecule layer, driving triplet-triplet annihilation upconversion. Despite having excellent carrier mobility, these systems suffer from inefficient triplet formation at the perovskite/annihilator interface. We studied triplet formation in formamidinium-methylammonium lead iodide/rubrene bilayers using photoluminescence and surface photovoltage methods. By studying systems constructed on glass as well as hole-selective substrates, comprising self-assembled layers of the carbazole derivative 2PACz ([2-(9H-carbazol-9-yl)ethyl]phosphonic acid) on indium-doped tin oxide, we saw how changes in the carrier dynamics induced by the hole-selective substrate perturbed triplet formation at the perovskite/rubrene interface. We propose that an internal electric field, caused by hole transfer at the perovskite/rubrene interface, strongly affects triplet exciton formation, accelerating exciton-forming electron-hole encounters at the interface but also limiting the hole density in rubrene at high excitation densities. Controlling this field is a promising path to improving triplet formation in perovskite/annihilator upconverters.
RESUMO
Nitrogen-vacancy (NV) color centers in diamond are excellent quantum sensors possessing high sensitivity and nano-scale spatial resolution. Their integration in photonic structures is often desired, since it leads to an increased photon emission and also allows the realization of solid-state quantum technology architectures. Here, we report the fabrication of diamond nano-pillars with diameters up to 1000 nm by electron beam lithography and inductively coupled plasma reactive ion etching in nitrogen-rich diamonds (type Ib) with [100] and [111] crystal orientations. The NV centers were created by keV-He ion bombardment and subsequent annealing, and we estimate an average number of NVs per pillar to be 4300 ± 300 and 520 ± 120 for the [100] and [111] samples, respectively. Lifetime measurements of the NVs' excited state showed two time constants with average values of τ1 ≈ 2 ns and τ2 ≈ 8 ns, which are shorter as compared to a single color center in a bulk crystal (τ ≈ 10 ns). This is probably due to a coupling between the NVs as well as due to interaction with bombardment-induced defects and substitutional nitrogen (P1 centers). Optically detected magnetic resonance measurements revealed a contrast of about 5% and average coherence and relaxation times of T2 [100] = 420 ± 40 ns, T2 [111] = 560 ± 50 ns, and T1 [100] = 162 ± 11 µs, T1 [111] = 174 ± 24 µs. These pillars could find an application for scanning probe magnetic field imaging.
RESUMO
Luminescent solar concentrators promise to reduce the cost of solar energy, but are hindered by a number of losses. Escape of luminescence through the large waveguide-air interfaces can be attenuated through alignment of the optical transition dipole of the luminophore along the waveguide surface normal, directing the maximum possible proportion of luminescence into waveguide modes. We demonstrate such alignment using a guest-host dye-doped liquid crystal sandwiched between conductive glass slides. Application of a potential while illuminating through a narrow edge caused a drop in the intensity of luminescence escaping the large surfaces, and an increase in the intensity of light escaping the narrow edges of the system. This is explained in terms of alignment of the transition dipoles of the dye. We discuss implementation in a luminescent solar concentrator.
RESUMO
Photochemical upconversion based on triplet-triplet annihilation (TTA-UC) is employed to enhance the short-circuit currents generated by two varieties of thin-film solar cells, a hydrogenated amorphous silicon (a-Si:H) solar cell and a dye-sensitized solar cell (DSC). TTA-UC is exploited to harvest transmitted sub-bandgap photons, combine their energies and re-radiate upconverted photons back towards the solar cells. In the present study we employ a dual-emitter TTA-UC system which allows for significantly improved UC quantum yields as compared to the previously used single-emitter TTA systems. In doing so we achieve record photo-current enhancement values for both the a-Si:H device and the DSC, surpassing 10-3 mA cm-2 sun-2 for the first time for a TTA-UC system and marking a record for upconversion-enhanced solar cells in general. We discuss pertinent challenges of the TTA-UC technology which need to be addressed in order to achieve its viable device application.
RESUMO
Photochemical upconversion via triplet-triplet annihilation is a promising technology for improving the efficiency of photovoltaic devices. Previous studies have shown that the efficiency of upconversion depends largely on two rate constants intrinsic to the emitting species. Here, we report that one of these rate constants can be altered by deuteration, leading to enhanced upconversion efficiency. For perylene, deuteration decreases the first order decay rate constant by 16 ± 9% at 298 K, which increases the linear upconversion response by 45 ± 21% in the low excitation regime.
RESUMO
The poor response of dye-sensitized solar cells (DSCs) to red and infrared light is a significant impediment to the realization of higher photocurrents and hence higher efficiencies. Photon up-conversion by way of triplet-triplet annihilation (TTA-UC) is an attractive technique for using these otherwise wasted low energy photons to produce photocurrent, while not interfering with the photoanodic performance in a deleterious manner. Further to this, TTA-UC has a number of features, distinct from other reported photon up-conversion technologies, which renders it particularly suitable for coupling with DSC technology. In this work, a proven high performance TTA-UC system, comprising a palladium porphyrin sensitizer and rubrene emitter, is combined with a high performance DSC (utilizing the organic dye D149) in an integrated device. The device shows an enhanced response to sub-bandgap light over the absorption range of the TTA-UC sub-unit resulting in the highest figure of merit for up-conversion assisted DSC performance to date.
Assuntos
Corantes/química , Fótons , Energia SolarRESUMO
Photon upconversion (UC) by triplet-triplet annihilation (TTA-UC) is employed in order to enhance the response of solar cells to sub-bandgap light. Here, we present the first report of an integrated photovoltaic device, combining a dye-sensitized solar cell (DSC) and TTA-UC system. The integrated device displays enhanced current under sub-bandgap illumination, resulting in a figure of merit (FoM) under low concentration (3 suns), which is competitive with the best values recorded to date for nonintegrated systems. Thus, we demonstrate both the compatibility of DSC and TTA-UC and a viable method for device integration.