Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Mol Biol Evol ; 41(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38573520

RESUMO

Visual systems adapt to different light environments through several avenues including optical changes to the eye and neurological changes in how light signals are processed and interpreted. Spectral sensitivity can evolve via changes to visual pigments housed in the retinal photoreceptors through gene duplication and loss, differential and coexpression, and sequence evolution. Frogs provide an excellent, yet understudied, system for visual evolution research due to their diversity of ecologies (including biphasic aquatic-terrestrial life cycles) that we hypothesize imposed different selective pressures leading to adaptive evolution of the visual system, notably the opsins that encode the protein component of the visual pigments responsible for the first step in visual perception. Here, we analyze the diversity and evolution of visual opsin genes from 93 new eye transcriptomes plus published data for a combined dataset spanning 122 frog species and 34 families. We find that most species express the four visual opsins previously identified in frogs but show evidence for gene loss in two lineages. Further, we present evidence of positive selection in three opsins and shifts in selective pressures associated with differences in habitat and life history, but not activity pattern. We identify substantial novel variation in the visual opsins and, using microspectrophotometry, find highly variable spectral sensitivities, expanding known ranges for all frog visual pigments. Mutations at spectral-tuning sites only partially account for this variation, suggesting that frogs have used tuning pathways that are unique among vertebrates. These results support the hypothesis of adaptive evolution in photoreceptor physiology across the frog tree of life in response to varying environmental and ecological factors and further our growing understanding of vertebrate visual evolution.


Assuntos
Opsinas , Pigmentos da Retina , Humanos , Animais , Opsinas/genética , Anuros/genética , Duplicação Gênica , Microespectrofotometria
2.
BMC Genomics ; 25(1): 1025, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39487448

RESUMO

Amphibians represent a diverse group of tetrapods, marked by deep divergence times between their three systematic orders and families. Studying amphibian biology through the genomics lens increases our understanding of the features of this animal class and that of other terrestrial vertebrates. The need for amphibian genomic resources is more urgent than ever due to the increasing threats to this group. Amphibians are one of the most imperiled taxonomic groups, with approximately 41% of species threatened with extinction due to habitat loss, changes in land use patterns, disease, climate change, and their synergistic effects. Amphibian genomic resources have provided a better understanding of ontogenetic diversity, tissue regeneration, diverse life history and reproductive modes, anti-predator strategies, and resilience and adaptive responses. They also serve as essential models for studying broad genomic traits, such as evolutionary genome expansions and contractions, as they exhibit the widest range of genome sizes among all animal taxa and possess multiple mechanisms of genetic sex determination. Despite these features, genome sequencing of amphibians has significantly lagged behind that of other vertebrates, primarily due to the challenges of assembling their large, repeat-rich genomes and the relative lack of societal support. The emergence of long-read sequencing technologies, combined with advanced molecular and computational techniques that improve scaffolding and reduce computational workloads, is now making it possible to address some of these challenges. To promote and accelerate the production and use of amphibian genomics research through international coordination and collaboration, we launched the Amphibian Genomics Consortium (AGC, https://mvs.unimelb.edu.au/amphibian-genomics-consortium ) in early 2023. This burgeoning community already has more than 282 members from 41 countries. The AGC aims to leverage the diverse capabilities of its members to advance genomic resources for amphibians and bridge the implementation gap between biologists, bioinformaticians, and conservation practitioners. Here we evaluate the state of the field of amphibian genomics, highlight previous studies, present challenges to overcome, and call on the research and conservation communities to unite as part of the AGC to enable amphibian genomics research to "leap" to the next level.


Assuntos
Anfíbios , Genômica , Animais , Anfíbios/genética , Genômica/métodos , Conservação dos Recursos Naturais/métodos , Genoma
3.
Mol Phylogenet Evol ; 198: 108130, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38889862

RESUMO

Unusually for oceanic islands, the granitic Seychelles host multiple lineages of endemic amphibians. This includes an ancient (likely ca. 60 million years) radiation of eight caecilian species, most of which occur on multiple islands.These caecilians have a complicated taxonomic history and their phylogenetic inter-species relationships have been difficult to resolve. Double-digest RAD sequencing (ddRADseq) has been applied extensively to phylogeography and increasingly to phylogenetics but its utility for resolving ancient divergences is less well established. To address this, we applied ddRADseq to generate a genome-wide SNP panel for phylogenomic analyses of the Seychelles caecilians, whose phylogeny has so far not been satisfactorily resolved with traditional DNA markers. Based on 129,154 SNPs, we resolved deep and shallow splits, with strong support. Our findings demonstrate the capability of genome-wide SNPs for evolutionary inference at multiple taxonomic levels and support the recently proposed synonymy of Grandisonia Taylor, 1968 with Hypogeophis Peters, 1879. We revealed three clades of Hypogeophis (large-, medium- and short-bodied) and identify a single origin of the diminutive, stocky-bodied and pointy-snouted phenotype.


Assuntos
Anfíbios , Filogenia , Polimorfismo de Nucleotídeo Único , Animais , Seicheles , Anfíbios/genética , Anfíbios/classificação , Filogeografia , Ilhas , Análise de Sequência de DNA
4.
Int J Mol Sci ; 24(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37511112

RESUMO

Predatory innovations impose reciprocal selection pressures upon prey. The evolution of snake venom alpha-neurotoxins has triggered the corresponding evolution of resistance in the post-synaptic nicotinic acetylcholine receptors of prey in a complex chemical arms race. All other things being equal, animals like caecilians (an Order of legless amphibians) are quite vulnerable to predation by fossorial elapid snakes and their powerful alpha-neurotoxic venoms; thus, they are under strong selective pressure. Here, we sequenced the nicotinic acetylcholine receptor alpha-1 subunit of 37 caecilian species, representing all currently known families of caecilians from across the Americas, Africa, and Asia, including species endemic to the Seychelles. Three types of resistance were identified: (1) steric hindrance from N-glycosylated asparagines; (2) secondary structural changes due to the replacement of proline by another amino acid; and (3) electrostatic charge repulsion of the positively charged neurotoxins, through the introduction of a positively charged amino acid into the toxin-binding site. We demonstrated that resistance to alpha-neurotoxins convergently evolved at least fifteen times across the caecilian tree (three times in Africa, seven times in the Americas, and five times in Asia). Additionally, as several species were shown to possess multiple resistance modifications acting synergistically, caecilians must have undergone at least 20 separate events involving the origin of toxin resistance. On the other hand, resistance in non-caecilian amphibians was found to be limited to five origins. Together, the mutations underlying resistance in caecilians constitute a robust signature of positive selection which strongly correlates with elapid presence through both space (sympatry with caecilian-eating elapids) and time (Cenozoic radiation of elapids). Our study demonstrates the extent of convergent evolution that can be expected when a single widespread predatory adaptation triggers parallel evolutionary arms races at a global scale.


Assuntos
Elapidae , Neurotoxinas , Animais , Neurotoxinas/genética , Neurotoxinas/toxicidade , Neurotoxinas/química , Anfíbios/genética , Venenos Elapídicos/química , Venenos de Serpentes , Aminoácidos
5.
Mol Phylogenet Evol ; 161: 107152, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33741534

RESUMO

Phylogenetic relationships of sub-Saharan African natricine snakes are understudied and poorly understood, which in turn has precluded analyses of the historical biogeography of the Seychelles endemic Lycognathophis seychellensis. We inferred the phylogenetic relationships of Seychelles and mainland sub-Saharan natricines by analysing a multilocus DNA sequence dataset for three mitochondrial (mt) and four nuclear (nu) genes. The mainland sub-Saharan natricines and L. seychellensis comprise a well-supported clade. Two maximally supported sets of relationships within this clade are (Limnophis,Natriciteres) and (Afronatrix,(Hydraethiops,Helophis)). The relationships of L. seychellensis with respect to these two lineages are not clearly resolved by analysing concatenated mt and nu data. Analysed separately, nu data best support a sister relationship of L. seychellensis with (Afronatrix,(Hydraethiops,Helophis)) and mt data best support a sister relationship with all mainland sub-Saharan natricines. Methods designed to cope with incomplete lineage sorting strongly favour the former hypothesis. Genetic variation among up to 33 L. seychellensis from five Seychelles islands is low. Fossil calibrated divergence time estimates support an overseas dispersal of the L. seychellensis lineage to the Seychelles from mainland Africa ca. 43-25 million years before present (Ma), rather than this taxon being a Gondwanan relic.


Assuntos
Colubridae/genética , Evolução Molecular , Filogenia , Filogeografia , África Subsaariana , Animais , Análise de Sequência de DNA , Seicheles
6.
BMC Evol Biol ; 20(1): 110, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32847507

RESUMO

BACKGROUND: Island systems offer excellent opportunities for studying the evolutionary histories of species by virtue of their restricted size and easily identifiable barriers to gene flow. However, most studies investigating evolutionary patterns and processes shaping biotic diversification have focused on more recent (emergent) rather than ancient oceanic archipelagos. Here, we focus on the granitic islands of the Seychelles, which are unusual among island systems because they have been isolated for a long time and are home to a monophyletic radiation of caecilian amphibians that has been separated from its extant sister lineage for ca. 65-62 Ma. We selected the most widespread Seychelles caecilian species, Hypogeophis rostratus, to investigate intraspecific morphological and genetic (mitochondrial and nuclear) variation across the archipelago (782 samples from nine islands) to identify patterns and test processes that shaped their evolutionary history within the Seychelles. RESULTS: Overall a signal of strong geographic structuring with distinct northern- and southern-island clusters were identified across all datasets. We suggest that these distinct groups have been isolated for ca. 1.26 Ma years without subsequent migration between them. Populations from the somewhat geographically isolated island of Frégate showed contrasting relationships to other islands based on genetic and morphological data, clustering alternatively with northern-island (genetic) and southern-island (morphological) populations. CONCLUSIONS: Although variation in H. rostratus across the Seychelles is explained more by isolation-by-distance than by adaptation, the genetic-morphological incongruence for affinities of Frégate H. rostratus might be caused by local adaptation over-riding the signal from their vicariant history. Our findings highlight the need of integrative approaches to investigate fine-scale geographic structuring to uncover underlying diversity and to better understand evolutionary processes on ancient, continental islands.


Assuntos
Anfíbios , Fluxo Gênico , Variação Genética , Genética Populacional , Anfíbios/genética , Animais , Evolução Biológica , Ilhas , Filogenia , Isolamento Reprodutivo , Seicheles
7.
Am J Phys Anthropol ; 166(3): 563-577, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29989160

RESUMO

OBJECTIVES: Synthesize information on sleep patterns, sleep site use, and daytime predation at sleep sites in lorisiforms of Asia and Africa (10 genera, 36 species), and infer patterns of evolution of sleep site selection. MATERIALS AND METHODS: We conducted fieldwork in 12 African and six Asian countries, collecting data on sleep sites, timing of sleep and predation during daytime. We obtained additional information from literature and through correspondence. Using a phylogenetic approach, we established ancestral states of sleep site selection in lorisiforms and traced their evolution. RESULTS: The ancestral lorisiform was a fur-clinger and used dense tangles and branches/forks as sleep sites. Use of tree holes and nests as sleep sites emerged ∼22 Mya (range 17-26 Mya) in Africa, and use of bamboo emerged ∼11 (7-14) Mya in Asia and later in Africa. Fur clinging and some sleep sites (e.g., tree holes, nests, but not bamboo or dense tangles) show strong phylogenetic signal. Nests are used by Galagoides, Paragalago, Galago and Otolemur; tree holes by Galago, Paragalago, Sciurocheirus and Perodicticus; tangles by Nycticebus, Loris, Galagoides, Galago, Euoticus, Otolemur, Perodicticus and Arctocebus; all but Sciurocheirus and Otolemur additionally sleep on branches/forks. Daytime predation may affect sleep site selection and sleep patterns in some species of Nycticebus, Galago, Galagoides, Otolemur and Perodicticus. Most lorisiforms enter their sleep sites around sunrise and leave around sunset; several are active during twilight or, briefly, during daytime. CONCLUSION: Variations in sleep behavior, sleep patterns and vulnerability to daytime predation provide a window into the variation that was present in sleep in early primates. Overall, lorisiforms use the daytime for sleeping and no species can be classified as cathemeral or polycyclic.


Assuntos
Lorisidae/fisiologia , Comportamento Predatório/fisiologia , Sono/fisiologia , Animais , Antropologia Física , Evolução Biológica
8.
Mol Phylogenet Evol ; 107: 48-55, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27637992

RESUMO

Genetic analyses of Australasian organisms have resulted in the identification of extensive cryptic diversity across the continent. The venomous elapid snakes are among the best-studied organismal groups in this region, but many knowledge gaps persist: for instance, despite their iconic status, the species-level diversity among Australo-Papuan blacksnakes (Pseudechis) has remained poorly understood due to the existence of a group of cryptic species within the P. australis species complex, collectively termed "pygmy mulga snakes". Using two mitochondrial and three nuclear loci we assess species boundaries within the genus using Bayesian species delimitation methods and reconstruct their phylogenetic history using multispecies coalescent approaches. Our analyses support the recognition of 10 species, including all of the currently described pygmy mulga snakes and one undescribed species from the Northern Territory of Australia. Phylogenetic relationships within the genus are broadly consistent with previous work, with the recognition of three major groups, the viviparous red-bellied black snake P. porphyriacus forming the sister species to two clades consisting of ovoviviparous species.


Assuntos
Elapidae/classificação , Animais , Austrália , Teorema de Bayes , DNA Mitocondrial/classificação , DNA Mitocondrial/genética , Elapidae/genética , Loci Gênicos , Variação Genética , Filogenia
9.
Mol Phylogenet Evol ; 75: 194-201, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24555995

RESUMO

The hyperoliid frog Tachycnemis seychellensis, the only species of its genus, is endemic to the four largest granitic islands of the Seychelles archipelago and is reliant on freshwater bodies for reproduction. Its presence in the Seychelles is thought to be the product of a transoceanic dispersal, diverging from the genus Heterixalus, its closest living relative (currently endemic to Madagascar), between approximately 10-35Ma. A previous study documented substantial intraspecific morphological variation among island populations and also among populations within the largest island (Mahé). To assess intraspecific genetic variation and to infer the closest living relative(s) of T. seychellensis, DNA sequence data were generated for three mitochondrial and four nuclear markers. These data support a sister-group relationship between T. seychellensis and Heterixalus, with the divergence between the two occurring between approximately 11-19Ma based on cytb p-distances. Low levels of genetic variation were found among major mitochondrial haplotype clades of T. seychellensis (maximum 0.7% p-distance concatenated mtDNA), and samples from each of the islands (except La Digue) comprised multiple mitochondrial haplotype clades. Two nuclear genes (rag1 and tyr) showed no variation, and the other two (rho and pomc) lacked any notable geographic structuring, counter to patterns observed within presumably more vagile Seychelles taxa such as lizards. The low levels of genetic variation and phylogeographic structure support an interpretation that there is a single but morphologically highly variable species of Seychelles treefrog. The contrasting genetic and morphological intraspecific variation may be attributable to relatively recent admixture during low sea-level stands, ecophenotypic plasticity, local adaptation to different environmental conditions, and/or current and previously small population sizes. Low genetic phylogeographic structure but substantial morphological variation is unusual within anurans.


Assuntos
Anuros/classificação , Evolução Biológica , Variação Genética , Filogenia , Animais , Anuros/genética , Teorema de Bayes , DNA Mitocondrial/genética , Haplótipos , Ilhas , Filogeografia , Análise de Sequência de DNA , Seicheles
10.
Conserv Biol ; 28(5): 1331-41, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25124528

RESUMO

In species-rich tropical forests, effective biodiversity management demands measures of progress, yet budgetary limitations typically constrain capacity of decision makers to assess response of biological communities to habitat change. One approach is to identify ecological-disturbance indicator species (EDIS) whose monitoring is also monetarily cost-effective. These species can be identified by determining individual species' responses to disturbance across a gradient; however, such responses may be confounded by factors other than disturbance. For example, in mountain environments the effects of anthropogenic habitat alteration are commonly confounded by elevation. EDIS have been identified with the indicator value (IndVal) metric, but there are weaknesses in the application of this approach in complex montane systems. We surveyed birds, small mammals, bats, and leaf-litter lizards in differentially disturbed cloud forest of the Ecuadorian Andes. We then incorporated elevation in generalized linear (mixed) models (GL(M)M) to screen for EDIS in the data set. Finally, we used rarefaction of species accumulation data to compare relative monetary costs of identifying and monitoring EDIS at equal sampling effort, based on species richness. Our GL(M)M generated greater numbers of EDIS but fewer characteristic species relative to IndVal. In absolute terms birds were the most cost-effective of the 4 taxa surveyed. We found one low-cost bird EDIS. In terms of the number of indicators generated as a proportion of species richness, EDIS of small mammals were the most cost-effective. Our approach has the potential to be a useful tool for facilitating more sustainable management of Andean forest systems.


Assuntos
Biodiversidade , Aves/fisiologia , Conservação dos Recursos Naturais/métodos , Lagartos/fisiologia , Mamíferos/fisiologia , Animais , Conservação dos Recursos Naturais/economia , Equador , Florestas , Modelos Lineares , Modelos Biológicos
11.
bioRxiv ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39005434

RESUMO

Amphibians represent a diverse group of tetrapods, marked by deep divergence times between their three systematic orders and families. Studying amphibian biology through the genomics lens increases our understanding of the features of this animal class and that of other terrestrial vertebrates. The need for amphibian genomic resources is more urgent than ever due to the increasing threats to this group. Amphibians are one of the most imperiled taxonomic groups, with approximately 41% of species threatened with extinction due to habitat loss, changes in land use patterns, disease, climate change, and their synergistic effects. Amphibian genomic resources have provided a better understanding of ontogenetic diversity, tissue regeneration, diverse life history and reproductive modes, antipredator strategies, and resilience and adaptive responses. They also serve as essential models for studying broad genomic traits, such as evolutionary genome expansions and contractions, as they exhibit the widest range of genome sizes among all animal taxa and possess multiple mechanisms of genetic sex determination. Despite these features, genome sequencing of amphibians has significantly lagged behind that of other vertebrates, primarily due to the challenges of assembling their large, repeat-rich genomes and the relative lack of societal support. The emergence of long-read sequencing technologies, combined with advanced molecular and computational techniques that improve scaffolding and reduce computational workloads, is now making it possible to address some of these challenges. To promote and accelerate the production and use of amphibian genomics research through international coordination and collaboration, we launched the Amphibian Genomics Consortium (AGC, https://mvs.unimelb.edu.au/amphibian-genomics-consortium) in early 2023. This burgeoning community already has more than 282 members from 41 countries. The AGC aims to leverage the diverse capabilities of its members to advance genomic resources for amphibians and bridge the implementation gap between biologists, bioinformaticians, and conservation practitioners. Here we evaluate the state of the field of amphibian genomics, highlight previous studies, present challenges to overcome, and call on the research and conservation communities to unite as part of the AGC to enable amphibian genomics research to "leap" to the next level.

12.
Zootaxa ; 3670: 55-62, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-26438921

RESUMO

Sepsophis punctatus Beddome 1870, the only species of a monotypic genus, was described based on a single specimen from the Eastern Ghats of India. We rediscovered the species based on specimens from Odisha and Andhra Pradesh state, India, after a gap of 137 years, including four specimens from close to the type locality. The holotype was studied in detail, and we present additional morphological characters of the species with details on natural history, habitat and diet. The morphological characters of the holotype along with two additional specimens collected by Beddome are compared with the specimens collected by us. We also briefly discuss the distribution of other members of the subfamily Scincinae and their evolutionary affinities.


Assuntos
Lagartos/classificação , Distribuição Animal , Estruturas Animais/anatomia & histologia , Estruturas Animais/crescimento & desenvolvimento , Animais , Ecossistema , Feminino , Índia , Lagartos/anatomia & histologia , Lagartos/crescimento & desenvolvimento , Masculino , Tamanho do Órgão
13.
Zootaxa ; 4995(1): 161-172, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34186811

RESUMO

We assess the availability of four names proposed by Wells Wellington (1985) for Australian death adders (Acanthophis). In agreement with previous literature, A. hawkei is an available name, whereas A. armstrongi, A. lancasteri, and A. schistos are not described in conformity with the requirements of Articles 13.1.1 or 13.1.2 of the International Code of Zoological Nomenclature and are therefore considered nomina nuda. Consequently, A. cryptamydros Maddock et al., 2015, is confirmed as the valid name for the Kimberley death adder of Western Australia. We comment on the need for greater clarity in the Code, and emphasise that the responsibility for establishing the availability of new nomina rests with their authors, not subsequent researchers.


Assuntos
Elapidae/classificação , Animais , Austrália , Terminologia como Assunto
14.
Zootaxa ; 4450(3): 359-375, 2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-30313840

RESUMO

A new species of indotyphlid caecilian amphibian, Hypogeophis montanus sp. nov., is described based on a series of specimens from the Seychelles island of Mahé, collected from two localities in 2013 and 2015. The new species most closely resembles the Seychelles (Mahé) endemic H. brevis in being short (maximum known total length in life ca. 110 mm) and long snouted, but differs by having more vertebrae, a relatively smaller head, and substantially distinct mitochondrial and nuclear gene sequences. Hypogeophis montanus sp. nov. is known from higher elevations (718-731 m) than H. brevis (ca. 350-650 m), and its elevationally restricted distribution on a single small island likely renders it threatened under IUCN Red List criteria. Hypogeophis montanus sp. nov. is the third species of small and long-snouted caecilian reported from the Seychelles. Along with H. brevis and H. pti, H. montanus sp. nov. is among the smallest known species of caecilian and possibly has the smallest global distribution.


Assuntos
Anfíbios , Animais , Ilhas , Seicheles
15.
Zootaxa ; 4329(4): 301-326, 2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-29242468

RESUMO

A new species of indotyphlid caecilian amphibian, Hypogeophis pti sp. nov., is described based on a series of specimens from the Seychelles island of Praslin. The type series was collected in 2013 and 2014, and a referred specimen previously identified as H. brevis Boulenger, 1911 was collected from an unspecified Seychelles locality in 1957. The new species most closely resembles the Seychelles endemic Hypogeophis brevis in being short (maximum known total length in life ca. 120 mm) and long snouted, but differs by having a less anteriorly positioned tentacular aperture and fewer primary annuli and vertebrae. In having only 67-69 vertebrae, H. pti sp. nov. is the most abbreviated extant species of caecilian reported to date.


Assuntos
Anfíbios , Animais , Ilhas , Seicheles
16.
Zootaxa ; 4170(2): 339-354, 2016 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-27701266

RESUMO

A new species of Cyrtodactylus (Geckoella) from the C. collegalensis complex is described based on a series of specimens from western and central India. Morphological and molecular data support the distinctiveness of the new form, which can be diagnosed from other Cyrtodactylus (including other Geckoella) species by its small body size (snout to vent length to 56 mm), the absence of precloacal and femoral pores, no enlarged preanal or femoral scales, and a dorsal scalation consisting wholly of small, granular scales. The new species is most closely related to C. collegalensis, C. speciosus and C. yakhuna, from which it differs by the presence of a patch of enlarged roughly hexagonal scales on the canthus rostralis and beneath the angle of jaw, its relatively long limbs and narrow body, and a dorsal colour pattern of 4-6 pairs of dark spots.


Assuntos
Lagartos/anatomia & histologia , Lagartos/classificação , Animais , DNA Mitocondrial , Feminino , Índia , Lagartos/genética , Masculino , Análise de Sequência de DNA , Especificidade da Espécie
17.
PLoS One ; 11(6): e0156757, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27280454

RESUMO

Mitochondrial genome (mitogenome) sequences are being generated with increasing speed due to the advances of next-generation sequencing (NGS) technology and associated analytical tools. However, detailed comparisons to explore the utility of alternative NGS approaches applied to the same taxa have not been undertaken. We compared a 'traditional' Sanger sequencing method with two NGS approaches (shotgun sequencing and non-indexed, multiplex amplicon sequencing) on four different sequencing platforms (Illumina's HiSeq and MiSeq, Roche's 454 GS FLX, and Life Technologies' Ion Torrent) to produce seven (near-) complete mitogenomes from six species that form a small radiation of caecilian amphibians from the Seychelles. The fastest, most accurate method of obtaining mitogenome sequences that we tested was direct sequencing of genomic DNA (shotgun sequencing) using the MiSeq platform. Bayesian inference and maximum likelihood analyses using seven different partitioning strategies were unable to resolve compellingly all phylogenetic relationships among the Seychelles caecilian species, indicating the need for additional data in this case.


Assuntos
Anfíbios/genética , DNA Mitocondrial/genética , Genoma Mitocondrial/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Anfíbios/classificação , Animais , Teorema de Bayes , Marcadores Genéticos , Variação Genética , Anotação de Sequência Molecular , Filogenia , Seleção Genética , Análise de Sequência de DNA , Seicheles , Especificidade da Espécie
18.
Zootaxa ; 4007(3): 301-26, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26623813

RESUMO

Australian death adders (genus Acanthophis) are highly venomous snakes with conservative morphology and sit-and-wait predatory habits, with only moderate taxonomic diversity that nevertheless remains incompletely understood. Analyses of mitochondrial and nuclear gene sequences and morphological characteristics of death adders in northern Australia reveal the existence of a new species from the Kimberley region of Western Australia and the Northern Territory, which we describe as Acanthophis cryptamydros sp. nov. Although populations from the Kimberley were previously considered conspecific with Northern Territory death adders of the A. rugosus complex, our mtDNA analysis indicates that its closest relatives are desert death adders, A. pyrrhus. We found that A. cryptamydros sp. nov. is distinct in both mtDNA and nDNA analysis, and possesses multiple morphological characteristics that allow it to be distinguished from all other Acanthophis species. This study further supports the Kimberley region as an area with high endemic biodiversity.


Assuntos
Elapidae/classificação , Distribuição Animal , Estruturas Animais/crescimento & desenvolvimento , Animais , Tamanho Corporal , Ecossistema , Elapidae/crescimento & desenvolvimento , Feminino , Masculino , Dados de Sequência Molecular , Tamanho do Órgão , Filogenia , Austrália Ocidental
19.
Zootaxa ; 3866(2): 246-60, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25283657

RESUMO

A new species of Riama lizard from the western slopes of the Andes in northern Ecuador is described herein. Morphologically, Riama yumborum sp. nov. can be distinguished from all other congenerics by having an incomplete nasoloreal suture and a cylindrical hemipenial body with diagonally orientated flounces on its lateral aspect. Phylogenetic analyses of mitochondrial and nuclear DNA support the monophyly of the new species and its sister taxon relationship with R. labionis, which occurs allopatrically.


Assuntos
Lagartos/classificação , Distribuição Animal , Estruturas Animais/anatomia & histologia , Estruturas Animais/crescimento & desenvolvimento , Animais , Tamanho Corporal , Equador , Feminino , Lagartos/anatomia & histologia , Lagartos/genética , Lagartos/crescimento & desenvolvimento , Masculino , Dados de Sequência Molecular , Tamanho do Órgão , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA