Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Bioconjug Chem ; 35(6): 766-779, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38625106

RESUMO

Addressing the complex challenge of healing of bacterially infected wounds, this study explores the potential of lipid nanomaterials, particularly advanced ultradeformable particles (UDPs), to actively influence the wound microenvironment. The research introduces a novel therapeutic approach utilizing silver sulfadiazine (SSD) coupled with vitamin E (VE) delivered through UDPs (ethosomes/transferosomes/transethosomes). Comparative physicochemical characterization of these nanosized drug carriers reveals the superior stability of transethosomes, boasting a zeta potential of -36.5 mV. This method demonstrates reduced side effects compared to conventional therapies, with almost 90% SSD and 72% VE release achieved in wound pH in a sustained manner. Cytotoxicity assessment shows 60% cell viability even at the highest concentration (175 µg/mL), while hemolysis test demonstrates RBC lysis below 5% at a concentration of 250 µg/mL. Vitamin E-SSD-loaded transethosomes (VSTEs) significantly enhance cellular migration and proliferation, achieving 95% closure within 24 h, underscoring their promising efficacy. The synergistic method effectively reduces bacterial burden, evidenced by an 80% reduction in Escherichia coli and Staphylococcus aureus within the wound microenvironment. This approach offers a promising strategy to address complications associated with skin injuries.


Assuntos
Portadores de Fármacos , Escherichia coli , Staphylococcus aureus , Vitamina E , Vitamina E/química , Portadores de Fármacos/química , Humanos , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/uso terapêutico , Antibacterianos/administração & dosagem , Sulfadiazina de Prata/farmacologia , Sulfadiazina de Prata/química , Sulfadiazina de Prata/uso terapêutico , Sulfadiazina de Prata/administração & dosagem , Cicatrização/efeitos dos fármacos , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia , Animais , Sistemas de Liberação de Medicamentos , Sobrevivência Celular/efeitos dos fármacos
2.
Mol Biol Rep ; 51(1): 716, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824237

RESUMO

BACKGROUND: Post kala-azar dermal leishmaniasis (PKDL) is a consequential dermal manifestation of visceral leishmaniasis (VL), serving as a parasite reservoir. The traditional diagnostic approach, which requires an invasive skin biopsy is associated with inherent risks and necessitates skilled healthcare practitioners in sterile settings. There is a critical need for a rapid, less invasive method for Leishmania detection. The main objective of this study was to evaluate and compare the diagnostic efficacy of PCR and qPCR in detecting PKDL, utilizing both skin and blood samples and to assess the utility of blood samples for molecular diagnosis. METHODS AND RESULTS: 73 individuals exhibiting clinical symptoms of PKDL and who had tested positive for rK39 rapid diagnostic test (RDT) were enrolled in this study. For the diagnosis of PKDL, both PCR and real-time quantitative PCR (qPCR), employing SYBR Green and TaqMan assays, were performed on blood and skin matched samples. qPCR results using both TaqMan and SYBR Green assay, indicated higher parasite loads in the skin compared to blood, as evident by the Ct values. Importantly, when blood samples were used for PKDL diagnosis by qPCR, an encouraging sensitivity of 69.35% (TaqMan assay) and 79.36% (SYBR Green) were obtained, compared to 8.2% with conventional PCR. CONCLUSION: The findings of the study suggest the potential utility of blood for molecular diagnosis by qPCR, offering a less invasive alternative to skin biopsies in field setting for the early detection of parasitaemia in PKDL patients and effective management and control of the disease.


Assuntos
Leishmaniose Cutânea , Leishmaniose Visceral , Reação em Cadeia da Polimerase em Tempo Real , Humanos , Leishmaniose Visceral/diagnóstico , Leishmaniose Visceral/sangue , Leishmaniose Visceral/parasitologia , Leishmaniose Cutânea/diagnóstico , Leishmaniose Cutânea/parasitologia , Leishmaniose Cutânea/sangue , Leishmaniose Cutânea/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Masculino , Feminino , Adulto , Adolescente , Pele/parasitologia , Pele/patologia , Sensibilidade e Especificidade , Pessoa de Meia-Idade , Carga Parasitária/métodos , Técnicas de Diagnóstico Molecular/métodos , Adulto Jovem , Criança , DNA de Protozoário/genética , DNA de Protozoário/sangue
3.
ACS Omega ; 8(4): 3768-3784, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36743019

RESUMO

Fungal endophytes are known to be a paragon for producing bioactive compounds with a variety of pharmacological importance. The current study aims to elucidate the molecular alterations induced by the bioactive compounds produced by the fungal endophyte Colletotrichum gloeosporioides in the tumor microenvironment of human breast cancer cells. GC/MS analysis of the ethyl acetate (EA) extract of C. gloeosporioides revealed the presence of bioactive compounds with anticancer activity. The EA extract of C. gloeosporioides exerted potential plasmid DNA protective activity against hydroxyl radicals of Fenton's reagent. The cytotoxic activity further revealed that MDA-MB-231 cells exhibit more sensitivity toward the EA extract of C. gloeosporioides as compared to MCF-7 cells, whereas non-toxic to non-cancerous HEK293T cells. Furthermore, the anticancer activity demonstrated by the EA extract of C. gloeosporioides was studied by assessing nuclear morphometric analysis and induction of apoptosis in MDA-MB-231 and MCF-7 cells. The EA extract of C. gloeosporioides causes the alteration in cellular and nuclear morphologies, chromatin condensation, long-term colony inhibition, and inhibition of cell migration and proliferation ability of MDA-MB-231 and MCF-7 cells. The study also revealed that the EA extract of C. gloeosporioides treated cells undergoes apoptosis by increased production of reactive oxygen species and significant deficit in mitochondrial membrane potential. Our study also showed that the EA extract of C. gloeosporioides causes upregulation of pro-apoptotic (BAX, PARP, CASPASE-8, and FADD), cell cycle arrest (P21), and tumor suppressor (P53) related genes. Additionally, the downregulation of antiapoptotic genes (BCL-2 and SURVIVIN) and increased Caspase-3 activity suggest the induction of apoptosis in the EA extract of C. gloeosporioides treated MDA-MB-231 and MCF-7 cells. Overall, our findings suggest that the bioactive compounds present in the EA extract of C. gloeosporioides promotes apoptosis by altering the genes related to the extrinsic as well as the intrinsic pathway. Further in vivo study in breast cancer models is required to validate the in vitro observations.

4.
Front Immunol ; 14: 1236952, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37638047

RESUMO

Visceral leishmaniasis (VL) is a severe and often fatal form of leishmaniasis caused by Leishmania donovani in the Indian sub-continent. Post Kala-azar Dermal Leishmaniasis (PKDL) is a late cutaneous manifestation of VL, typically occurring after apparent cure of VL, but sometimes even without a prior history of VL in India. PKDL serves as a significant yet neglected reservoir of infection and plays a crucial role in the transmission of the disease, posing a serious threat to the VL elimination program in the Indian sub-continent. Therefore, the eradication of PKDL should be a priority within the current VL elimination program aimed at achieving a goal of less than 1 case per 10,000 in the population at the district or sub-district levels of VL endemic areas. To accomplish this, a comprehensive understanding of the pathogenesis of PKDL is essential, as well as developing strategies for disease management. This review provides an overview of the current status of diagnosis and treatment options for PKDL, highlighting our current knowledge of the immune responses underlying disease development and progression. Additionally, the review discusses the impact of PKDL on elimination programs and propose strategies to overcome this challenge and achieve the goal of elimination. By addressing the diagnostic and therapeutic gaps, optimizing surveillance and control measures, and implementing effective intervention strategies, it is possible to mitigate the burden of PKDL and facilitate the successful elimination of VL in the Indian sub-continent.


Assuntos
Leishmania donovani , Leishmaniose Visceral , Humanos , Leishmaniose Visceral/diagnóstico , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/epidemiologia , Povo Asiático , Gerenciamento Clínico , Índia/epidemiologia
5.
ACS Omega ; 8(45): 42014-42027, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38024747

RESUMO

Parasitic infections are a major global health issue causing significant mortality and morbidity. Despite substantial advances in the diagnostics and treatment of these diseases, the currently available options fall far short of expectations. From diagnosis and treatment to prevention and control, nanotechnology-based techniques show promise as an alternative approach. Nanoparticles can be designed with specific properties to target parasites and deliver antiparasitic medications and vaccines. Nanoparticles such as liposomes, nanosuspensions, polymer-based nanoparticles, and solid lipid nanoparticles have been shown to overcome limitations such as limited bioavailability, poor cellular permeability, nonspecific distribution, and rapid drug elimination from the body. These nanoparticles also serve as nanobiosensors for the early detection and treatment of these diseases. This review aims to summarize the potential applications of nanoparticles in the prevention, diagnosis, and treatment of parasitic diseases such as leishmaniasis, malaria, and trypanosomiasis. It also discusses the advantages and disadvantages of these applications and their market values and highlights the need for further research in this field.

6.
Artigo em Inglês | MEDLINE | ID: mdl-33142369

RESUMO

Visceral leishmaniasis (VL) is still a major public health concern in developing countries having the highest outbreak and mortality potential. While the treatment of VL has greatly improved in recent times, the current diagnostic tools are limited for use in the post-elimination setting. Although conventional serological methods of detection are rapid, they can only differentiate between active disease in strict combination with clinical criteria, and thus are not sufficient enough to diagnose relapse patients. Therefore, there is a dire need for a portable, authentic, and reliable assay that does not require large space, specialized instrument facilities, or highly trained laboratory personnel and can be carried out in primary health care settings. Advances in the nanodiagnostic approaches have led to the expansion of new frontiers in the concerned area. The nanosized particles are blessed with an ability to interact one-on-one with the biomolecules because of their unique optical and physicochemical properties and high surface area to volume ratio. Biomolecular detection systems based on nanoparticles (NPs) are cost-effective, rapid, nongel, non-PCR, and nonculture based that provide fast, one-step, and reliable results with acceptable sensitivity and specificity. In this review, we discuss different NPs that are being used for the identification of molecular markers and other biomarkers, such as toxins and antigens associated with leishmaniasis. The most promising diagnostic approaches have been included in the article, and the ability of biomolecular recognition, advantages, and disadvantages have been discussed in detail to showcase the enormous potential of nanodiagnostics in human and veterinary medicine. This article is categorized under: Diagnostic Tools > Diagnostic Nanodevices Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Diagnostic Tools > Biosensing.


Assuntos
Leishmaniose Visceral , Leishmaniose , Nanomedicina , Técnicas Biossensoriais , Humanos , Leishmaniose/diagnóstico , Leishmaniose Visceral/diagnóstico , Nanopartículas , Sensibilidade e Especificidade
7.
PLoS Negl Trop Dis ; 14(7): e0008221, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32614818

RESUMO

Leishmaniasis remains a public health concern around the world that primarily affects poor folks of the developing world spanning across 98 countries with mortality of 0.2 million to 0.4 million annually. Post kala-azar dermal leishmaniasis (PKDL) is the late skin manifestation of visceral leishmaniasis (VL). It has been reported that about 2.5% to 20% of patients recovered from VL develop PKDL having stilted macular or nodular lesions with parasites. In the Indian subcontinent (ISC), it manifests a few months after recovery from VL, though in Africa it can occur simultaneously with VL or a little later. New cases of PKDL are also observed without prior VL in the ISC. These individuals with PKDL represent an important but largely neglected reservoir of infection that perpetuates anthroponotic Leishmania donovani transmission in the ISC and can jeopardize the VL elimination program as these cases can infect the sand flies and spread the endemic. Therefore, it becomes imperative to eradicate PKDL as a part of the VL elimination program. With the limited treatment options besides little knowledge on PKDL, this review stands out in focusing on different aspects that should be dealt for sustained VL elimination.


Assuntos
Leishmaniose Cutânea/etiologia , Leishmaniose Visceral/complicações , Gluconato de Antimônio e Sódio/efeitos adversos , Biomarcadores , Predisposição Genética para Doença , Humanos , Memória Imunológica , Leishmaniose Cutânea/diagnóstico , Leishmaniose Cutânea/genética , Leishmaniose Cutânea/prevenção & controle , Leishmaniose Visceral/tratamento farmacológico
8.
Front Chem ; 8: 510, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32719770

RESUMO

Visceral leishmaniasis (VL) has been a major health concern in the developing world, primarily affecting impoverished people. It is caused by a protozoan parasite Leishmania donovani and is characterized by immune dysfunction that can lead to deadly secondary infections. Several adverse side effects limit the existing treatment options; hence, the need of the hour is some drug option with high efficacy and no toxicity. To make targeted delivery of Amphotericin B (AmB), we have used amine-functionalized versions of carbon nanostructures, namely f-CNT and f-Graphene (f-Grap). The results with f-Grap-AmB, because of a much larger surface area, were expected to be better. However, the results obtained by us showed only marginal improvement (IC50 f-Grap-AmB; 0.0038 ± 0.00119 µg/mL). This is, in all likelihood, due to the agglomeration effect of f-Grap-AmB, which is invariably obtained with graphene. To resolve this issue, we have synthesized a graphene-CNT composite (graphene 70% and CNT 30% by weight). Because CNT is dispersed in between graphene sheets, the agglomeration effect is avoided, and our study suggests that the f-Composite-AmB (f-Comp-AmB) showed no toxicity against the murine J774A.1 macrophage cell line and did not induce any hepatic or renal toxicity in Swiss albino mice. The f-Comp-AmB also showed a remarkable elevation in the in vitro and in vivo antileishmanial efficacy in comparison to AmB and f-CNT-AmB or f-Grap-AmB in J774A.1 and Golden Syrian hamsters, respectively. Additionally, we have also observed that the percentage suppression of parasite replication in the spleen of the hamster was significantly higher in the f-Comp-AmB (97.79 ± 0.2375) treated group in comparison with the AmB (85.66 ± 1.164) treated group of hamsters. To conclude, f-Comp-AmB could be a safe and reliable therapeutic option over the other carbon-based nanoparticles (NPs), i.e., f-CNT-AmB, f-Grap-AmB, and conventional AmB.

9.
Artigo em Inglês | MEDLINE | ID: mdl-31616663

RESUMO

The extensive application of engineered nanomaterial (ENM) in various fields increases the possibilities of human exposure, thus imposing a huge risk of nanotoxicity. Hence, there is an urgent need for a detailed risk assessment of these ENMs in response to their toxicological profiling, predominantly in biomedical and biosensor settings. Numerous "toxico-omics" studies have been conducted on ENMs, however, a specific "risk assessment paradigm" dealing with the epigenetic modulations in humans owing to the exposure of these modern-day toxicants has not been defined yet. This review aims to address the critical aspects that are currently preventing the formation of a suitable risk assessment approach for/against ENM exposure and pointing out those researches, which may help to develop and implement effective guidance for nano-risk assessment. Literature relating to physicochemical characterization and toxicological behavior of ENMs were analyzed, and exposure assessment strategies were explored in order to extrapolate opportunities, challenges, and criticisms in the establishment of a baseline for the risk assessment paradigm of ENMs exposure. Various challenges, such as uncertainty in the relation of the physicochemical properties and ENM toxicity, the complexity of the dose-response relationships resulting in difficulty in its extrapolation and measurement of ENM exposure levels emerged as issues in the establishment of a traditional risk assessment. Such an appropriate risk assessment approach will provide adequate estimates of ENM exposure risks and will serve as a guideline for appropriate risk communication and management strategies aiming for the protection and the safety of humans.

10.
Artigo em Inglês | MEDLINE | ID: mdl-30160220

RESUMO

BACKGROUND: Blood biomarkers are a cost-effective and valid method to diagnose ischemic stroke and differentiate its subtypes in countries with poor resources. OBJECTIVE: To perform a systematic review of published literature evaluating the diagnostic utility of blood-based biomarkers to diagnose and differentiate the etiology of ischemic stroke. METHODS: A comprehensive literature search was carried out till December 2017 in major scientific and medical databases including PubMed, Cochrane, OVID and Google Scholar. Modified Quality Assessment of Diagnostic Accuracy Studies questionnaire was used to assess the methodological quality of each study. RESULTS: Twenty-six studies were identified relevant to our systematic review. Various biomarkers have been studied, though only a few biomarkers such as a B-type natriuretic peptide (BNP) and Ddimer have proved their clinical utility. None of the other tested biomarkers appeared to have consistent results to diagnose ischemic stroke subtypes. Most of the studies had limitations in the classification of ischemic stroke, sample size, sample collection time, methods, biomarker selection and data analysis. CONCLUSION: Our systematic review does not recommend the use of any blood biomarker for clinical purposes based on the studies conducted to date. BNP and D-dimer may present optimal biomarker for diagnosis and differentiation of ischemic stroke. However, large well-designed clinical studies are required to validate utility of these biomarkers to differentiate subtypes of ischemic stroke.


Assuntos
Isquemia Encefálica/sangue , Acidente Vascular Cerebral/sangue , Biomarcadores/sangue , Isquemia Encefálica/diagnóstico , Produtos de Degradação da Fibrina e do Fibrinogênio/análise , Humanos , Peptídeo Natriurético Encefálico/sangue , Acidente Vascular Cerebral/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA