Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell ; 170(5): 973-985.e10, 2017 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-28841420

RESUMO

Mycobacterium leprae causes leprosy and is unique among mycobacterial diseases in producing peripheral neuropathy. This debilitating morbidity is attributed to axon demyelination resulting from direct interaction of the M. leprae-specific phenolic glycolipid 1 (PGL-1) with myelinating glia and their subsequent infection. Here, we use transparent zebrafish larvae to visualize the earliest events of M. leprae-induced nerve damage. We find that demyelination and axonal damage are not directly initiated by M. leprae but by infected macrophages that patrol axons; demyelination occurs in areas of intimate contact. PGL-1 confers this neurotoxic response on macrophages: macrophages infected with M. marinum-expressing PGL-1 also damage axons. PGL-1 induces nitric oxide synthase in infected macrophages, and the resultant increase in reactive nitrogen species damages axons by injuring their mitochondria and inducing demyelination. Our findings implicate the response of innate macrophages to M. leprae PGL-1 in initiating nerve damage in leprosy.


Assuntos
Antígenos de Bactérias/metabolismo , Modelos Animais de Doenças , Glicolipídeos/metabolismo , Hanseníase/microbiologia , Hanseníase/patologia , Macrófagos/imunologia , Mycobacterium leprae/fisiologia , Animais , Axônios/metabolismo , Axônios/patologia , Doenças Desmielinizantes , Larva/crescimento & desenvolvimento , Hanseníase/imunologia , Mycobacterium marinum/metabolismo , Bainha de Mielina/química , Bainha de Mielina/metabolismo , Bainha de Mielina/ultraestrutura , Neuroglia/metabolismo , Neuroglia/patologia , Óxido Nítrico/metabolismo , Peixe-Zebra
2.
Trends Immunol ; 43(6): 426-437, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35527182

RESUMO

Zebrafish are relatively new to the field of host-pathogen interactions, although they have been a valuable vertebrate model for decades in developmental biology and neuroscience. Transparent zebrafish larvae have most components of the human innate immune system, and adult zebrafish also produce cells of the adaptive immune system. Recent discoveries using zebrafish infection models include mechanisms of pathogen survival and host cell sensing of microbes. These discoveries were enabled by zebrafish technology, which is constantly evolving and providing new opportunities for immunobiology research. Recent tools include CRISPR/Cas9 mutagenesis, in vivo biotinylation, and genetically encoded biosensors. We argue that the zebrafish model - which remains underutilized in immunology - provides fertile ground for a new understanding of host-microbe interactions in a transparent host.


Assuntos
Interações entre Hospedeiro e Microrganismos , Peixe-Zebra , Animais , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Humanos , Larva
3.
J Infect Dis ; 216(6): 776-779, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28934421

RESUMO

Understanding the pathogenesis of leprosy granulomas has been hindered by a paucity of tractable experimental animal models. Mycobacterium leprae, which causes leprosy, grows optimally at approximately 30°C, so we sought to model granulomatous disease in the ectothermic zebrafish. We found that noncaseating granulomas develop rapidly and eventually eradicate infection. rag1 mutant zebrafish, which lack lymphocytes, also form noncaseating granulomas with similar kinetics, but these control infection more slowly. Our findings establish the zebrafish as a facile, genetically tractable model for leprosy and reveal the interplay between innate and adaptive immune determinants mediating leprosy granuloma formation and function.


Assuntos
Modelos Animais de Doenças , Granuloma/microbiologia , Hanseníase/microbiologia , Mycobacterium leprae , Animais , Masculino , Peixe-Zebra
4.
PLoS Pathog ; 11(3): e1004792, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25815898

RESUMO

The prolonged survival of Mycobacterium tuberculosis (M. tb) in the host fundamentally depends on scavenging essential nutrients from host sources. M. tb scavenges non-heme iron using mycobactin and carboxymycobactin siderophores, synthesized by mycobactin synthases (Mbt). Although a general mechanism for mycobactin biosynthesis has been proposed, the biological functions of individual mbt genes remain largely untested. Through targeted gene deletion and global lipidomic profiling of intact bacteria, we identify the essential biochemical functions of two mycobactin synthases, MbtK and MbtN, in siderophore biosynthesis and their effects on bacterial growth in vitro and in vivo. The deletion mutant, ΔmbtN, produces only saturated mycobactin and carboxymycobactin, demonstrating an essential function of MbtN as the mycobactin dehydrogenase, which affects antigenicity but not iron uptake or M. tb growth. In contrast, deletion of mbtK ablated all known forms of mycobactin and its deoxy precursors, defining MbtK as the essential acyl transferase. The mbtK mutant showed markedly reduced iron scavenging and growth in vitro. Further, ΔmbtK was attenuated for growth in mice, demonstrating a non-redundant role of hydroxamate siderophores in virulence, even when other M. tb iron scavenging mechanisms are operative. The unbiased lipidomic approach also revealed unexpected consequences of perturbing mycobactin biosynthesis, including extreme depletion of mycobacterial phospholipids. Thus, lipidomic profiling highlights connections among iron acquisition, phospholipid homeostasis, and virulence, and identifies MbtK as a lynchpin at the crossroads of these phenotypes.


Assuntos
Proteínas de Bactérias/metabolismo , Ferro/metabolismo , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidade , Oxazóis/metabolismo , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/genética , Camundongos , Mycobacterium tuberculosis/genética , Fatores de Virulência/genética
5.
Proc Natl Acad Sci U S A ; 109(4): 1257-62, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22232695

RESUMO

To measure molecular changes underlying pathogen adaptation, we generated a searchable dataset of more than 12,000 mass spectrometry events, corresponding to lipids and small molecules that constitute a lipidome for Mycobacterium tuberculosis. Iron is essential for M. tuberculosis survival, and the organism imports this metal using mycobactin and carboxymycobactin siderophores. Detection of an unexpected siderophore variant and deletions of genes for iron scavenging has led to a revised mycobactin biosynthesis model. An organism-wide search of the M. tuberculosis database for hypothetical compounds predicted by this model led to the discovery of two families of previously unknown lipids, designated monodeoxymycobactins and monodeoxycarboxymycobactins. These molecules suggest a revised biosynthetic model that alters the substrates and order of action of enzymes through the mycobactin biosynthetic pathway. We tested this model genetically by solving M. tuberculosis lipidomes after deletion of the iron-dependent regulator (ideR), mycobactin synthase B (mbtB), or mycobactin synthase G (mbtG). These studies show that deoxymycobactins are actively regulated during iron starvation, and also define essential roles of MbtG in converting deoxymycobactins to mycobactin and in promoting M. tuberculosis growth. Thus, lipidomics is an efficient discovery tool that informs genetic relationships, leading to a revised general model for the biosynthesis of these virulence-conferring siderophores.


Assuntos
Vias Biossintéticas/fisiologia , Lipídeos/química , Modelos Biológicos , Mycobacterium tuberculosis/metabolismo , Oxazóis/metabolismo , Sideróforos/metabolismo , Cromatografia Líquida de Alta Pressão , Primers do DNA/genética , Bases de Dados Factuais , Ferro/metabolismo , Espectrometria de Massas
6.
Proc Natl Acad Sci U S A ; 108(48): 19335-40, 2011 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-22087000

RESUMO

Unlike the dominant role of one class II invariant chain peptide (CLIP) in blocking MHC class II, comparative lipidomics analysis shows that human cluster of differentiation (CD) proteins CD1a, CD1b, CD1c, and CD1d bind lipids corresponding to hundreds of diverse accurate mass retention time values. Although most ions were observed in association with several CD1 proteins, ligands binding selectively to one CD1 isoform allowed the study of how differing antigen-binding grooves influence lipid capture. Although the CD1b groove is distinguished by its unusually large volume (2,200 Å(3)) and the T' tunnel, the average mass of compounds eluted from CD1b was similar to that of lipids from CD1 proteins with smaller grooves. Elution of small ligands from the large CD1b groove might be explained if two small lipids bind simultaneously in the groove. Crystal structures indicate that all CD1 proteins can capture one antigen with its hydrophilic head group exposed for T-cell recognition, but CD1b structures show scaffold lipids seated below the antigen. We found that ligands selectively associated with CD1b lacked the hydrophilic head group that is generally needed for antigen recognition but interferes with scaffold function. Furthermore, we identified the scaffolds as deoxyceramides and diacylglycerols and directly demonstrate a function in augmenting presentation of a small glycolipid antigen to T cells. Thus, unlike MHC class II, CD1 proteins capture highly diverse ligands in the secretory pathway. CD1b has a mechanism for presenting either two small or one large lipid, allowing presentation of antigens with an unusually broad range of chain lengths.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos CD1/genética , Antígenos CD1/metabolismo , Ceramidas/metabolismo , Diglicerídeos/metabolismo , Conformação Proteica , Sequência de Aminoácidos , Anticorpos Monoclonais/metabolismo , Especificidade de Anticorpos , Antígenos CD1/isolamento & purificação , Sequência de Bases , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Ensaio de Imunoadsorção Enzimática , Humanos , Espectrometria de Massas , Dados de Sequência Molecular , Estrutura Molecular , Análise de Sequência de DNA
7.
J Exp Med ; 203(4): 1093-104, 2006 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-16606669

RESUMO

To restrict infection by Legionella pneumophila, mouse macrophages require Naip5, a member of the nucleotide-binding oligomerization domain leucine-rich repeat family of pattern recognition receptors, which detect cytoplasmic microbial products. We report that mouse macrophages restricted L. pneumophila replication and initiated a proinflammatory program of cell death when flagellin contaminated their cytosol. Nuclear condensation, membrane permeability, and interleukin-1beta secretion were triggered by type IV secretion-competent bacteria that encode flagellin. The macrophage response to L. pneumophila was independent of Toll-like receptor signaling but correlated with Naip5 function and required caspase 1 activity. The L. pneumophila type IV secretion system provided only pore-forming activity because listeriolysin O of Listeria monocytogenes could substitute for its contribution. Flagellin monomers appeared to trigger the macrophage response from perforated phagosomes: once heated to disassemble filaments, flagellin triggered cell death but native flagellar preparations did not. Flagellin made L. pneumophila vulnerable to innate immune mechanisms because Naip5+ macrophages restricted the growth of virulent microbes, but flagellin mutants replicated freely. Likewise, after intratracheal inoculation of Naip5+ mice, the yield of L. pneumophila in the lungs declined, whereas the burden of flagellin mutants increased. Accordingly, macrophages respond to cytosolic flagellin by a mechanism that requires Naip5 and caspase 1 to restrict bacterial replication and release proinflammatory cytokines that control L. pneumophila infection.


Assuntos
Citosol/imunologia , Flagelina/imunologia , Legionella pneumophila/imunologia , Macrófagos/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Apoptose/fisiologia , Células Cultivadas , Feminino , Imunidade Inata , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos A , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide , Proteína Inibidora de Apoptose Neuronal/fisiologia , Transdução de Sinais/fisiologia , Receptores Toll-Like/fisiologia
8.
J Clin Invest ; 131(5)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33645551

RESUMO

Nearly 140 years after Robert Koch discovered Mycobacterium tuberculosis, tuberculosis (TB) remains a global threat and a deadly human pathogen. M. tuberculosis is notable for complex host-pathogen interactions that lead to poorly understood disease states ranging from latent infection to active disease. Additionally, multiple pathologies with a distinct local milieu (bacterial burden, antibiotic exposure, and host response) can coexist simultaneously within the same subject and change independently over time. Current tools cannot optimally measure these distinct pathologies or the spatiotemporal changes. Next-generation molecular imaging affords unparalleled opportunities to visualize infection by providing holistic, 3D spatial characterization and noninvasive, temporal monitoring within the same subject. This rapidly evolving technology could powerfully augment TB research by advancing fundamental knowledge and accelerating the development of novel diagnostics, biomarkers, and therapeutics.


Assuntos
Imagem Molecular , Mycobacterium tuberculosis/metabolismo , Tuberculose/diagnóstico por imagem , Tuberculose/metabolismo , Animais , Biomarcadores/metabolismo , Humanos
9.
JCI Insight ; 1(15): e88843, 2016 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-27699251

RESUMO

Transcriptome profiles derived from the site of human disease have led to the identification of genes that contribute to pathogenesis, yet the complex mixture of cell types in these lesions has been an obstacle for defining specific mechanisms. Leprosy provides an outstanding model to study host defense and pathogenesis in a human infectious disease, given its clinical spectrum, which interrelates with the host immunologic and pathologic responses. Here, we investigated gene expression profiles derived from skin lesions for each clinical subtype of leprosy, analyzing gene coexpression modules by cell-type deconvolution. In lesions from tuberculoid leprosy patients, those with the self-limited form of the disease, dendritic cells were linked with MMP12 as part of a tissue remodeling network that contributes to granuloma formation. In lesions from lepromatous leprosy patients, those with disseminated disease, macrophages were linked with a gene network that programs phagocytosis. In erythema nodosum leprosum, neutrophil and endothelial cell gene networks were identified as part of the vasculitis that results in tissue injury. The present integrated computational approach provides a systems approach toward identifying cell-defined functional networks that contribute to host defense and immunopathology at the site of human infectious disease.


Assuntos
Redes Reguladoras de Genes , Hanseníase/genética , Hanseníase/imunologia , Adolescente , Adulto , Eritema Nodoso/genética , Eritema Nodoso/imunologia , Feminino , Humanos , Hanseníase Virchowiana/genética , Hanseníase Virchowiana/imunologia , Hanseníase Tuberculoide/genética , Hanseníase Tuberculoide/imunologia , Masculino , Pessoa de Meia-Idade , Transcriptoma , Adulto Jovem
10.
Chem Biol ; 18(12): 1537-49, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22195556

RESUMO

The lipidic envelope of Mycobacterium tuberculosis promotes virulence in many ways, so we developed a lipidomics platform for a broad survey of cell walls. Here we report two new databases (MycoMass, MycoMap), 30 lipid fine maps, and mass spectrometry datasets that comprise a static lipidome. Further, by rapidly regenerating lipidomic datasets during biological processes, comparative lipidomics provides statistically valid, organism-wide comparisons that broadly assess lipid changes during infection or among clinical strains of mycobacteria. Using stringent data filters, we tracked more than 5,000 molecular features in parallel with few or no false-positive molecular discoveries. The low error rates allowed chemotaxonomic analyses of mycobacteria, which describe the extent of chemical change in each strain and identified particular strain-specific molecules for use as biomarkers.


Assuntos
Lipídeos/análise , Mycobacterium tuberculosis/metabolismo , Animais , Biomarcadores/análise , Cromatografia Líquida de Alta Pressão , Bases de Dados Factuais , Camundongos , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA